The Techno-Galactic Guide to Software Observation
Methods from the Techno-Galactic Software Observatory
(Brussels, June 2017)

Constant, Association for Art and Media

The Techno-Galactic Guide to Software Observation

I am less interested in the critical practice of reflection, of
showing once-again that the emperor has no clothes, than in
finding a way to diffract critical inquiry in order to make
difference patterns in a more worldly way. !

A spectre is haunting the galaxy. It is not revolutionary 2, it is not
just another global scale vulnerability either . No matter where
you happen to be, with your phone or watched over by a passing
satellite, software daemons are running somewhere in the back-
ground. Look! There they are, staring right back at you. Software’s
entanglement in the everyday appears complete, but is it really?
Let’s look more closely.

We find ourselves in a universe built on the 1990s revival of a
1960s dream: software as a service (SaaS)*, a framework in
which the use of software has increasingly been knitted into the
production of software. While the rhetoric, rights, and procedures
that proliferate in this universe suggest that software production
and consumption constitute separate realms, this knitting together
radically alters the operative role of software in society. The corre-
sponding shifts ripple across galaxies, through social structures,
working conditions, and trans-universal logistics. It results in a pro-
fusion of apparatuses that aspire to be seamless while optimizing
and monetizing individual and collective flows of information in line
with the interests of a handful of actors. The diffusion of software

Donna Haraway: Modest Witness: Feminist Diffractions in Science Studies. In: The
Disunity of Science: Boundaries, Contexts, and Power. Ed. by Peter Galison and
David J. Stump. 1996, pp. 428-442

Karl Marx and Friedrich Engels: The communist manifesto. Penguin, 2002
Jann et al. Horn: Meltdown and Spectre Attack. 2018

Thomas Haigh: Software in the 1960s as Concept, Service, and Product. In: IEEE
Annals of the History of Computing 24.1 (2002), pp. 5-13

services affects individuals and communities in the form of intensi-
fied identity shaping and self-management. It also transforms the
public by capturing institutions and common use infrastructures
in supercharged start-up visions or the inertia of tech giants. As
more and more software centralizes data flows in cloud services,
effectively collapsing all societal spheres into the same process-
ing logic, their service oriented architectures come to blur the last
traces of the thin line that separates bio- from necro-politics. ®

And so software spins its web around us. As it twists we turn,
trying to take some distance, only to realize that we are too well
tangled in its gooey net. Caught upside down and dangling & we
ask: How can we interact, respond to, and think with software?
What approaches can we use to recognize the agency of different
actors, their ways of working, and their politics? What methods
of observation are conducive to critical inquiry and affirmative
discord? How can we resurface software and find sites where its
infrastructures are reconfiguring the everyday? How can we take
stock of the ways software is always at work, especially where it
is designed to disappear?

Overloaded by all these questions, vexed by constant pop-ups
and push notifications, a fantasy takes shape: Let's smash our
devices with a sledge hammer, throw them out, retreat off grid and
out of sight, and live happy software-free lives. But this fantasy
cannot hold, nor can it hold us. While ‘disconnection’ seems to be
the latest luxury-item for tech-billionaires — the same gang that
profits from the extension of connectivity — for most human and
non-human inhabitants of this galaxy unplugging is not an option.

5 Tung-Hui Hu: A Prehistory of the Cloud. MIT Press, 2015
6 https://www.youtube.com/watch?v=NTZhrwR7CoE

Even those that experienced the joy that comes from catapulting
a smart device across the street know that the liberating feeling
that follows does not last. We need a better option: one that lets
us poke and push back at the daemons that insist on saturating
our time and surrounding our environment.

In June 2017 we gathered with a group of Software Curious
Persons (w P.116) in Brussels for six days at the Techno-Galactic
Software Observatory 7. There we engaged in the observation
of the multiple scales of software, the industries and commu-
nities that produce it and their devastatingly relational political
economies. While clutching at our computers and keyboards, we
picked up the word observation, turning it over and around. We
brought it right up to our noses and then held it outstretched
to get a better look at the term’s colonial and positivist legacy.
Observation, and the enabling of it through intensive data-centric
feedback mechanisms, is part of the cybernetic spells that under-
pin the present day software production-consumption complex.
Holding the pain and the promise of our limitations, of our situated
point of view, we synced our breath to the rhythm of our software
and, with an agile sun salutation, began to explore the possibili-
ties of engagement with software’s implications. “Excuse me, do
you know where to find the Techno-Galactic Walk-in Clinic?”

The Techno-Galactic Guide to Software Observation was collec-
tively produced as an outcome of this temporary Observatory. The
methods tried and tested there were collected and compiled in this
guide. Although our modest acts of witnessing are incomplete and
ongoing, through this kind of collective ghost-hunting we found
some ways for being in, around, through, and with software.

7 The Techno-Galactic Software was a worksession organised by Constant. http: /
/constantvzw.org/site/-The-Technogalactic-Software-Observat
ory-.html

This guide invites you to experiment with ways to stay with the
trouble of software. In it you will find a set of practical and imprac-
tical tools for the tactical (mis)use of software, empowering and
enabling users to resist embedded paradigms and assumptions.
It is a collection of methods for approaching software, experienc-
ing its myths and realities, its risks and benefits. Drawing on the-
ories of software and computation developed in the wilderness
of academia and through rigorously undisciplined research, we
grounded our methods in hands-on exercises and experiments
that you can now try at home. These methods were developed
in and inspired by the context of software production, hacker cul-
ture, software studies, computer science research, Free Software
communities, privacy activism, and artistic practice. Exploring and
cross-contaminating ways of looking from these different milieus,
we realised that reading is not enough. Software is not just text,
formats are always already in execution, code produces its own
normative perspective and depth of field.

Observation is one potential beginning — a way to turn engage-
ment into tickling. Come join us at the edge of the universe, on
the metro platform, at your kitchen table or at your next biometric
identification, as we mark and measure critical distances from and
entanglements with the seemingly endless software systems that
surround us.

Invitation to The Walk-in Clinic, June 2017:

Do you suffer from the disappearance of your software into
the cloud, feel oppressed by unequal user privilege, or
experience the torment of software-ransom of any sort?
Bring your devices and interfaces to the World Trade Center!
With the help of a clear and in-depth session, at the
Techno-Galactic Walk-In Clinic we guarantee immediate
results. The Walk-In Clinic provides free hands-on

observations to software curious people of all kinds. A wide
range of professional and amateur practitioners will provide
you with Software-as-a-Critique-as-a-Service on the spot.
Available services range from immediate interface critique,
collaborative code inspection, data dowsing, various forms
of network analyses, unusability testing, identification of
unknown viruses, risk assessment, opening of black-boxes
and more. Free software observations provided. Last intake
at 16:45.

walk-in clinic the :’e:‘l:e\‘/arﬂkmlklb!rfll
——— techno-galactic Kenng Abertiian
12 06 2017 software Brussels / Bruxelles
14:00 - 17:00 observatory Constantasbiorg

o w=

Announcing the Walk-in Clinic. Poster design: Harrisson

@ Retrospective / Take Out
This service verifies whether your expectations are
being met. If so, we provide you with your official

record and you are ready to leave the clinic.

Approximate duration: 10 minutes

@ wTC-time
@ Flow of the Chart
Chart of the flow on demand!
SSOGY (SOFTWARE SKETCHING OBSERVATION
YUPPIES) is here to provide you with one and

only personalized flow chart & chat for your
human-machine situation!

Approximate duration: 15 minutes

@ Refreshment

The fountain brings a soothing corporate noise to
refresh any unsettlingly quiet or unhappily frenetic
spaces with water.

Approximate duration: ongoing

@ continuous integration

We monitor the seamless integration of all services at
the software observatory clinic, including the
circulation of bodies and bits.

the

@ Process invosation software
Process Invocation is a service helping the user to 0 bservqro r
discover and visualize processes normally kept

concealed from the user.

Approximate duration: 15 minutes

walk-in clinic

12 06 2017
14:00 - 17:00

Software as a Critique as a Service (SaaCaaS) Directory

@ Something In The Middle Maybe
(siTMM)

SomethingInTheMiddleMaybe observes the network

interactions that your chosen software makes.

We ask patients what they want to observe (e.g. a

daily interaction with my smartphone, or a specific

application on my computer)

Patients get a log of the network connections
performed by their chosen interaction

Approximate duration: 5 to 10 minutes

@ RSOC - Relational Software
Observatory Consultancy Sen

e
By paying a visit to our ethnomethodology interview
practice you'll be mapping perspectives to know how
to observe software from different angles /
perspectives. Our practioners have at heart to make
possible the "what is the relation to software"
discussions into a service

Approximate duration: 12 minutes

@ Techno-galactic software walk-in clinic intake

@ Future Blobservation Booth

The hand which holds your mouse everyday hides
many secrets. Visit the Future Blobservation Booth
to have your fortunes read and derive life insight
from the wisdom of software.

Approximate duration: The approximate duration

of our service will be on

and 30 seconds.

@ Interface Détournement

Baseline of the critical service:
Tired of business jargon and unnavigable services ?
Come to do an Interface Détournement |

Motivation of the critical service:
capitalism as sorcery (Isabelle Stengers) :

we are under the black magic of capitalism interface making

- we have the feeling that some words are imposed to us,
conseauently we are reclaiming a power of saying/naming

Goal/Description of a situation at hand
Methods of Observation:
-Unpacking an interface, fixed our browsing speed

Live redesign of an interface using the browser developer tools.

Study the layout by removing all the content

= Play with the interface content, add some humour, irony to it

Approximate duration: unknown

@ File therapy

Do you have software concerns that regard a specific
file? Through this service you can experiment with
various therapeutic forms. Turn your software
anguish into a takeaway file.

Do you encounter software problems or do you have
concerns about particular files? Through this service
you can experiment with various therapeutic forms.
Our therapeutic approach is inspired by the unix file
system paradigm in which every component of a
computer can be represented by a file, be it your
hard drive, memory or sound card. Going together
through the affordances and limitations of such a
paradigm, we hope to provide a more intimate access
to your software.

Whether it is about specific problematic situations
with your computer, or to address a general curiosity
about filesystems, we will take you by the hand
through an extensive intake

« First we will discuss your interest or your
problem, to try and pick a file that speaks of your
concern. For example, if you experience problems
with connecting to the network, we can take a
networkconfiguration file. Or maybe you have
already a file in mind that you find concerning

+ Then you transfer the file to our dedicated usb
stick and we will inspect it on our computer.

» During the inspection you will get an
explanation of the various translations which happen
10 the file.

» On the basis of (initially) a visual inspection,
we will discuss which measures should be taken. Can
we intervene in the file, provide some "pixel surgery”
and provide you with a restored version? Or do we
need to move forward to more meditative treatments
such as sound therapy?

+ We hope that our service will shift your
perspective on your situation by experiencing how
files look like in a different environment.

Approximate duration: 15 minutes

@ Agile Sun Salutation

Welcome to Agile Sun Salutation, an introduction
to Agile Yoga (Why Organise ? Go Agile 1), a new
methodology to improve your professional and
personal life

Approximate duration: 10 minutes

@ “What is it like to be an elevator?”

In this service you can experience and analyse a
verbal live demo of a reverse engineered elevator
software. There is also the possibility to re-enact the
elevator software as a Internalized elevator, after
SCPs finished the flow chart station.

Approximate duration: To experience some minutes!
—————— Toreenactaround 10 to 15
minutes!

Software as a Critique as a Service (SaaCaaS) Directory

TECHNOGALACTIC SOFTWARE OBSERVATORY WALK-IN CLINIC

Name of the Software Curious Person
Situation

Description of situation at hand

[] intake

[] Retrospection Estimated Time for service

Directed to Services Total time available |:|

D Something In The Middle Maybe (SITMM) Agile Sun Salutation

[] relational Software observatory Consultancy Service Continuous integration
D "What is it like to be an elevator?" Future Blobservation Booth

D Interface Détournement WTC-time

Cooo

D Flow of the chart - chart of the flow on demand! File therapy

What would be a outcome

EXIT STATUS Can this file be published YES [J
NOT DONE [] DONE[] No [0

SIGNATURE/DATE

STORE FOR DELETION [

Intake form for Software Curious People (SCP)

10

% WARNING

11

The survival techniques described in the following guide are to be
used at your own risk in cases of emergency as well as in cases
of nonurgent software curiosities.

our methods for observation,
like mapping, come with their luggage.

The publisher will not accept any responsibility in case of dam-
ages caused by misuse, misunderstanding of instruction, or lack
of curiosity. By trying the methods described in the guide, you ac-
cept responsibility for losing or loosing data and for altering hard-
ware, including hard disks, usb key, cloud storage, and screens
perhaps by throwing them on the floor, or by falling on the floor
yourself upon tangling your feet in an entanglement of cables
such that your laptop goes flying.

No harm has been done to humans, animals, computers or plants
while creating the guide. No firearms or other kinds of weapons
are needed in order to survive software. Just a little bit of patience.

Physical fitness plays a great part of software observation.
Be fit or CTRL-Quit.

Remember, software observation can be stressful. You might ex-
perience:

Anxiety

Sleep deprivation
Forgetting about eating
Loss of time tracking

Can you cope with software? You just have to.

Introduction 3 Warning 11 Table of Contents 12

14 Close encounters - Meetings between people, software and hard-
ware :: Encounter several historical collections of hardware back-to-
back 17 Interview people about their histories with software 30 In-
terview with Jean Huens 35 Ask several people from different
fields and age groups the same question: "What is software?" 49 FMEM
and /DEV/IMEM 52 Pan/Monopsychism 57 Setup a Relational Soft-
ware Observatory Consultancy (RSOC) 121 Hand reading 146

60 Temporality — Constellations of time and locality :: Space-Noise
Rearrangements 64 I hope you are comfortable, [insert
name] 69 "Nannyware": Software that observes and addresses the
user 71 Useless scroll against productivity 79 The ends of time 85
How humans and machines negotiate the experience of
time 89

100 Languaging - Observing software as/through writing :: Quine 103
Glossaries as an exercise 106 Adding qualifiers 112 Searching "soft-
ware" through software 114 Persist in calling everyone a Software
Curious Person 116

118 Healing and embodiment - Feeling software :: Setup a Re-
lational Software Observatory Consultancy (RSOC) 121 Agile Sun
Salutation 135 Agile Sun Salutation 141 Hand reading 146
Bug reporting for sharing observations 150 When dirty.db get’s
dirty 153 Interface Détournement 156 Comportments of software
(softwear) 162

164 Flows - Flow-regulation, logistics and seamlessness :: Con-
tinuous Integration 167 Space-Noise Rearrangements 64 make
make do 171 Flowcharts (Flow of the chart —> chart of the flow: on
demand!) 175 What is it like to be AN ELEVATOR*? 196

188 Invasive observations - Being on the side, in the middle or be-
hind :: Something in the Middle Maybe (SitMM) 191 What is it like to
be AN ELEVATOR*? 196 Side Channel Analysis 202

206 Collections - Compiling observations :: Compiling a bestiary of
software logos 208 Glossaries as an exercise 106 Encounter several
historical collections of hardware back-to-back 17 Testing the testbed:
testing software with observatory ambitions (SWOA) 220 Prepare a
Reader to think theory with software 224 "Nannyware": Software that
observes and addresses the user 71

Keyword Index 236 Bibliography 238 Colophon 242
Free Art License 248

CLOSE ENCOUNTERS
Meetings between

people, software and hardware

15

Descending into the depths of any hardware
reveals insights into the computer.?8

Admittedly, facilitating a usability study is
not a natural way to interact with other human
beings. So it is totally understandable why
most of us have trouble facilitating, making
classic mistakes such as:[. . .] Treat the test
session as a conversation rather than an
observation. Talking too much, at inappropriate
times, or leading the user can affect what he
does and says, which can invalidate part or all
of the research findings. Interviewing methods
are different from observational methods. ?

[Tlhe ENIAC's “master programmer” was not a
person, but a machine component, responsible
for executing loops and linking sequences
together. That is, the master programmer
handled the “program control” signal that each
unit produced after it successfully executed a
function. 10

8 David A. Patterson and John L. Hennessy: Computer Organization and Design
MIPS Edition, Fifth Edition: The Hardware/Software Interface. English. 5 edition.
Amsterdam ; Boston: Morgan Kaufmann, Oct. 2013. 1sBN: 978-0-12-407726-3,
pg.19

9 Kara Pernice: Talking with Users in a Usability Test. en. 2014. Visited on Jan. 31,
2018

10 wendy Hui Kyong Chun: Programmability. In: Software Studies. Ed. by
Matthew Fuller. 2008, pp. 225-228. 1SBN: 978-0-262-06274-9. Visited on Jan. 31,
2018, pg.225

2| I participated in the hackathon much in the
spirit of a critique that had run out of steam.
I concerned myself to coconstruct knowledge —
to make a thing. Although the hackathon did
draw people together in a Latourian spirit
around a matter of concern, in a very Latourian
spirit, this actually existing site of design
practice revealed that its politics were in its
forms and norms — in its manufactured urgency,
in the distance between the studio and the
world, and the media ecologies that made it
possible to promise to cross that distance
without walking it.1?

L Lilly Irani: Hackathons and the Making of Entrepreneurial Citizenship. en. In:
Science, Technology, & Human Values 40.5 (Sept. 2015), pp. 799-824. ISSN:
0162-2439, 1552-8251. pO1: 10.1177/0162243915578486. Visited on Jan. 31,
2018, pg.20

16

METHOD

F

17

Encounter several
historical collections
of hardware
back-to-back

HZuli: This can be done by identifying one or more computer
museums and visiting them with little time in-between. Visiting a
friend with a large basement and lots of left-over computer
equipment can have a similar effect. Seeing and possibly
touching hardware from different contexts (state-administration,
business, research, ...), periods of time, cultural contexts
(California, Germany, French-speaking Belgium) and price
ranges allows you to sense the interactions between hardware
and software development.

MOTE i This method offers a perfect opportunity to hear people
speak about objects in their contexts, how they worked and did
not work and how particular pieces of hardware and software are
linked one with another. It also shows the economic and cultural
aspects of softwares.

WAERMIMG i DO NOT FOLD, SPINDLE OR MUTILATE

@XHMPLE '+ Spaghetti Suitcase

At one point during the demonstration of a Bull computer at the
Computer Museum NAM-IP, our museum guide revealed the sys-
tem’s “software” — a suitcase sized module with dozens of patch
cords. She made the comment that the term “spaghetti code”
(a derogatory expression for early code that used many “GOTO”
statments) had its origin in this physical arrangement of code as
patchings.

Preserving old hardware is a means of observing the physical
manifestation of software. Operating older computers can result
in actually touching software.

@XQMPLE i+ Play with binary. Create punch cards.

“The highlight of the collection is a recreation of a real punch card
workshop of the 1960s.”

18

3

V] pA

A

Lalable des
manipulations

' 1y I ,mh\. 1y

; s
NNy

WIIFWe dawrg

ORDINATEUR GAMMA 30 - 1963

hanumérique BULL.

Code alp!

@XHMPLE i1 Collection de la Maison des Ecritures

Y
» P30

d’Informatique & Bible, Maredsous

The Collection de la Maison des Ecritures d’Informatique & Bible
was donated to NAM-IP by the Centre Informatique et Bible that
was founded in 1979 at the Benedictine abbey of Maredsous. The
center was located in the “House of Scripture”, a pavilion near
the entrance to the abbey, where biblical scholars, linguists and
computer scientists applied computer processing to bible-texts
and it's references.

The idea of introducing informatics as a method for working with
and on the Bible dates back to 1971 when it was done via punch
cards and then transferred to the memory of magnetic tape. Then
came the step of analyzing texts using computers while at the
same time introducing computers to the delights of reading the
Bible with the help of Optical Character Recognition. The particu-
larity of this collection lies in the fact that it conserves and presents
multiple moments in the life of a text rendered into and analyzed
through software, starting from its initial stages of computerization
and going up to contemporary forms of software.

SEE ALSON
Interview people about their histories with software

26

ang ‘dIntormutious ¢

l - aredsous 89

25 ans

d'lnioru\.\u

\(\%ormaw\que = oW\
Ma\'edao\)a

28 e
.

(& soURCE

Machines a cartes perforées de marque Bull w http://www.h
istoireinform.com/Histoire/+Infos/jmclcadr.htm

IMAGES ! SpaghettiCodes P.19 Museum guide at NAM-IP touching

Y software. P.21 “A la table des manipulations”, manually creating punch-

29

cards with the EMPUNCH model 80. P.22 TGSO Punchcards P.24 Atelier
mécanographique Bull P.25 ‘Maredsous 89. 15 ans d’Informatique et Bible’
(‘Maredsous 89. 15 years of informatics and bible’) P.27 Continuous form
paper with lexical research and a copy of the Interface Bulletin, published
by the Centre Informatique et Bible: http://www.cibmaredsous.b
e/cib3000.htm P.28

Interview people
about their histories
with software

METHOD

@ WHAT:: Collect personal narratives around software history.
Retrace the path of an individual’s relation to software, how it
changed during the years, and what human access memories
surround it. Look at software through personal relations and
emotions.

HaLli Interviews are a good way to do it, but informal
conversations work, too.

WHEM i+ Whenever (talking to people who are retired is a plus).

LH i Anyone with ten years or more of any kind of experience
with software.

%@ UEGEMCY:: High.

30

<

EXAMFPLE

31

WARMIMG:: Oral histories will be lost if they are not
recorded.

Jean Heuns has been collecting servers, calculators, soft-
wares, magnetic tapes and hard disks for thirty years. He
came to an agreement with the Department of Computer Sci-
ences (KU Leuven) for them to be displayed in the depart-
ment hallways.

At the time computers were mainframes and you did feed them
with programs by punch cards. Programming was writing down
the program, then you punched it, and the next day you get results,
mostly error. That's the way it worked at that time. To teach us
programming, they used the language of that time, Fortran, and
some kind of invented assembly langage, it didn’t really exist, it
was simplified.

As an anecdocte, | remember punchcards were a block of paper,
we were jealous of the people who came into the computer cen-
ter with huge stacks of cards. They were really small programs,
not complicated ones. In fact you had to learn to use the com-
puter from scratch, everything was new, you couldn’t rely on pre-
vious experiences. And to start with small programs was difficult
enough.

| remember the first program | had to work on. You got three num-
bers, you had to make the program decide if you can construct a
triangle with the numbers being the sides of the triangle.

S 1), 3 |
5= Dysan &3

(& souRCE

How did you see the rise of personal computer and the soft-
ware that goes with it?

| have to admit that we missed it. We didn’t see that what was
new was powerful. We were not impressed by the software. |
remember Windows 95, the news on TV, people sleeping on the
street to get it. | remember when | got my first Windows version,
with a box of 22 floppies or so. Then | wanted to do something, to
compile a program, but there was no compiler.

For me software is the magic that makes computers usable.

Quotes taken from an interview with Jan Huens, see following pages.

35

Interview with Jean Huens

The following is a transcript of an interview with Jean Huens con-
ducted by Peggy Pierrot on December 21, 2017 in an office of
Departement Computerwetenschappen of the KU Leuven.

You have been using computers since a long time, as you
explained to us during the tour we had the joy of attending
during the TGSO. | heard that until recently, let’s say the late
1990s, that to learn computer programming you had to start
by writing down the program on paper?

In 1973, | did study computer sciences, it was the second year
of the Computer Science course, here in Leuven. At the time
computers were mainframes and you did feed them with programs
by punch cards. Programming was writing down the program,
then you punched it and the next day you get results, mostly error.
That's the way it worked at that time. To teach us programming,
they used the language of that time, Fortran and some kind of
invented assembly language, it didn’t really exist, it was simplified.

Most of the time you wrote down your program, the teacher and
the assistant would have to tell you what is wrong or good, you
didn’t have much practical experience.

What was it like, tons of pages?

No. As an anecdocte, | remember punchcards came in huge
stacks, we were jealous of the people who came into the com-
puter center with piles of cards. They were really small programs,
not complicated one. In fact you had to learn to use the com-
puter from scratch, everything was new, you couldn't rely on pre-
vious experiences. And to start with small programs was difficult
enough.

That was also the time when Edsger W. Dijkstra, who fought
against the goto and other common but bad constructs. 12 1 still
remember him, in an audience, giving us a lecture on good tech-
niques in programming at the International computing symposium
1977 in Liége. 2 It was a rather hard course because Dijkstra ex-
pected you to quickly understand and implement his ideas.

And then from '75 on, computers became cheaper and could be
bought by departments and smaller entities. And then came the
first interactive computer. They were still beasts, about two cu-
bic meters, costing two millions belgian francs. But it was cheap
enough to allow people to type in directly commands. | started
working here in '75 as a researcher, it has evolved continuously
and | saw computers getting cheaper and getting easier to use.The
way to use it was simplified, you could start to go to the beast and
try it out.

| remember more or less: you wrote down the program in Fortran
for instance. We always thought in the beginning that it would
work and it didn't, so after a turn around you were giving it back
to the operator and you have to wait another half a day or a night
to get the results.

What kind of program were you working on?

I remember the first program | had to write was: you got three
numbers and you had to make the program decide if you could
construct a triangle with the numbers being the sides of the trian-

gle.

12 Edsger W. Dijkstra: A Case against the GOTO Statement. 1972
13 Edsger W. Dijkstra: Programming: From craft to scientific discipline. 1977

36

37

That took an afternoon to be processed?

Well, yeah. You had to imagine how to do it which was also one
problem, then you prepare the cards with the punching machine
and you give the package of cards to the operator who was feed-
ing the computer with the cards. Operators were people who had
the task of feeding the computers by hand, with paper cards, and
then the cards got written on disks and later processed by the
mainframe from disk. Finally results got printed on paper. And
after a number of hours or a night you got a listing on a piece of
paper with the results or program compilation errors.

When where you able to record the program onto the ma-
chine?

| think that happened between '75 and '80. After the punching
cards, which were already a way to record the program, we had
typewriters and then terminals. We could record the programs
by typing it on the terminal and the computer would store them
on magnetic discs. IBM had number for everything, | remember
the 3300 [manufactured from 1970 on] was a magnetic disk. We
didn’t touch the machines, operators would change the disks, we
could only access the typewriter/terminal. That was our most di-
rect connection to the computer. The times were different. The
mainframes were such huge costly beasts that it had operators
day and night to keep it busy. Even at night there were two or
three guys mounting tapes, disc mounting tapes, that kind of stuff
(= P.38).

When did you stop working with operators?

Somewhere between '85 and '90. There were still operators at
the main computer of the university, but there were also small
computers, so researchers and student could have direct access
when needed.

3D CG concept of an IBM 3330 Direct Access Storage Facility by Oliver Obi. http
s://commons.wikimedia.org/wiki/File:IBM_magnetic_disk_dri
ves_3330%2B3333.png

39

When did you start to work with software sold by others or
given away in order to do your research?

You still needed an operating system for the mainframe that was
delivered by IBM or the constructor delivered the mainframe. When
you bought mini-computers, which were the smaller versions of
mainframes, in most cases you bought an operating systems,
compilers and all the stuff you needed to be able to program or
work those things. In most cases, the computer sciences depart-
ment bought the mini-computer from, for instance Digital Equip-
ment Corporation, a manufacturer at that time, but they didn't buy
DEC's software. The DEC software was not open source or free,
and as a university we could get Unix for free and could run it on
those DEC computers. That is what the computer department of
the University of Louvain la Neuve l'unité d’informatique, did and
so did we.

When did you start working with Unix as an 0S?

| took a trip to Amsterdam, it must have been in 1979 or 1980.
Well, the story starts in our French sister university (LLN) where
they had a PDP-11 with Unix on it. You could get Unix, at the time,
when you were a university, from Bell Labs (part of AT&T), the
American telephone company. AT&T was a mega organisation at
the time before the dismantlement of AT&T/Bell system14. Due
to monopoly, the US authorities split it up into different Baby Bells.
One of the restrictions was that the research Baby Bell, could
not sell anything. There were computer scientists there who de-
veloped some interesting things (e.g. Unix). Universities got the
source code for free, but NO support, nothing not even how to

14 https://en.wikipedia.org/wiki/Breakup_of_the_Bell_System

install it. In Unité d'informatique, where they had a PDP-11/7015
they were lucky: they got the same computer that Unix was de-
veloped on. They got the disk by snail mail as a post-office pack-
age. They mounted it and it did spin up and they had Unix. Here,
we had a cheaper PDP11, the PDP 11/6016. We got the Unix
disk distribution from Bell Labs but we could not run it, because
we got another type of disk (RKO7). We could look at it but that
was all, because our disc format was different than the one at
Bell Labs. Somebody here (P. Verbaeten) wrote a driver for that
disk in I'unité d’'informatique of LLN. It compiled it but we couldn’t
try it because we did not have a RKO7. The nearest place with
Unix and a RKO7 was in Vrije Universiteit Amsterdam. Andrew
Tenenbaum, who wrote a number of books on operating systems,
was working there. He was learning to speak Dutch. We under-
stood his English better but his assistant explained that he needed
to practice speaking Dutch because he would have to pass an
exam. There we compiled Unix with an RKO7 driver and stored it
on a bootable RKO7 disk. With that disk back in Leuven we could
start Unix on our PDP11/60. An error in the process meant a trip
Leuven-Amsterdam and back. In my opinion the start of Open
Source was Unix because we had to maintain it by ourselves
and we learned a lot from the sources. In that time for software
distribution you had to store it on magnetic tape and send the
tape to different places with associated problems. For example,
the agents at the customs at the airport or post office didn’t know
what to do with the tapes or discs in terms of custom clearance.
They used magnetic or x-rays as inspection tools and we had to
write on the package that it should not be x-rayed. And sometimes
we still got unreadable tapes/discs.

15 https://i0.wp.com/www.utterpower.com/wp-content/uploads/
2011/10/pdpll-70-panel.jpg
16 https://dave.cheney.net/tag/pdp-11

40

41

So it took weeks between the transportation and the cus-
toms?

Yes, the custom had to clear the packages. | remember I've been
in the customs in Zaventem. | had received a letter that my pack-
age from Bell Labs had arrived. | went there thinking | would have
to pay something and go. But no. It had to be cleared so there
was some organisation that had to do administrative stuff, so |
only got it a few days later. The response time was huge.

After that period of time, how did you switch from that kind
of collaboration on how to make software and make software
work, to another kind of collaboration on networks and be-
tween universities and researchers?

In the Unix systems at that time there was a kind of networking
protocol which worked on serial lines (UUCP). To connect two
Unix systems together you only need a serial line. We had a line
between LLN and Leuven, it's only 25 kms, but we had to ask
Belgacom, then La Régie des Télégraphes et Téléphones, to get
a modem to connect through their network and then over that mo-
dem you could reach an amazing speed of 300 characters per
second. And that was the first communication. It happened some-
where around 1985. And then you had connection with another
computer by writing something here and doing the transfer to the
other computer and executing it there.

What was the first thing you sent through a network like
this?

| didn’t do it myself, | remember it was a kind of chat program.
On the LLN side was Professor Elie Milgrom. He is retired now.
On this side, it was Professor Yves Willems. And | remember that
they typed something and they got a response from the other side
and that was it. But | remember that Professor Willems sent “Ok,

we stop now.” And that Elie Milgrom answered “See you later,
Alligator” [a reference to Bill Haley and the Comets]. At the time
we still had these kind of songs in mind. (lol). Those Unix to Unix
connexions were first. And there was a worldwide Unix to Unix
based network, Usenet (1979). It still exists somewhere.You can
download loads of illegal movies and that stuff. That was not what
we meant at the time. But that is what is left. And Usenet became
gradually replaced by the Internet in USA. In Europe, the Internet
came a lot later, but we had limited access to the Internet by
mail and even FTP; We could send mail to the Internet and we
could receive mail from them because some friendly American
university (and later companies) translated internet mail to UCP
mail. Moreover they translated specially formatted mails into FTP
request and sent the result back to us by mail. That was before
the 1990’s.

Your relation to software had changed at the time because
you did not have to do all this manipulations with the soft-
ware your received. Was it already floppy discs?

No, magnetic tapes, for the mainframe at least. Even most of the
mini-computers used some (cheaper) magnetic tapes. Between
1990 and 1995 the main machines used for Unix software devel-
opment was a VAX from DEC. Once a year the software came
from Berkeley. It was still Unix but had been modified by Berkeley
for virtual memory and all the stuff which is common now. We
received a tape, with lot of goodies, | still remember we didn’t
know what was on the tape but we scrutinized it to find out what
was on there, what we could use. .. In Europe, companies like
Siemens were trying to set up software centers to make software
avaiable. They were even trying to set up European networks. But
researchers loved the Internet. It worked. It was useful for their
research. So companies in Europe were trying to set up their own
networks, | remember for example the X/OPEN transport protocol,

42

43

which was a set of standards about what software layers should
do. But it didn’t succeed because around 1992 IBM decided to
quit their own private network and to go for TCP/IP which was
the switching point. Everything done for X/OPEN were suddently
forgotten. For the mainframes, and certainly in Belgium comput-
ing was mainly mainframes, I'm talking about universities here, so
when IBM decided to go for TCP/IP the universities followed. But
the adoption of TCP/IP was really slow. For example, Belgacom
was not interested in running the Domain Name System so we
did it here, for some time, starting in 1993 with Pierre Verbaten17.
Belgacom were focused on X25 (DCS - https://en.wikipe
dia.org/wiki/X.25) sothey missed it.

It was like the french Minitel?

Well, at that time we were really jealous about Minitel. Could you
imagine that? Terminals? At home? You could work home with a
computer! You could send emails! All in one, a PC computer with
a modem!

How did the research about software evolve in the depart-
ment?

| am mainly talking about network research but here. There were
people working on numerical analysis, computing, artificial intel-
ligence. | was just not involved in that research so | don't know
much about it

7 https://www.dnsbelgium.be/en/history

You were focused on software and networks?

Yes, we produced some software. We made software to generate
compilers. There was some A.l. software in Prolog, numerical
analysis libraries, etc. Some were sold or shared, it depends. We
sold some software from the beginning | think when it was not
even a department but a professor and a couple of students.

Is that when you joined?

No it was already a department. | studied industrial engeneering
in electronics first. At the time in electronics you heard something
about computers, | was interested in it. | wanted to know more. |
heard KU Leuven had started a degree in computer engineering.
It was the first year where industrial engineers could join. The only
thing we knew about computers were from movies. | wanted to
know how they worked. I'm not sure if | know now it now, but |
have some ideas.

How many languages do you know?

Assembly, FORTRAN, PL-1 the language invented by IBM to be
the universal one, C, Cobol. Perl... | don’t know... some more.
I'm not fluent in any computer language, but | can read any lan-
guage especially well written, | know | can understand it and, if
needed, learn it... | know JAVA also. As a system administrator,
the thing | use most are the command line of Unix and Perl. But
that's because i’'m more familiar with those two so it goes faster.

44

45

How did you see the rise of personal computer and the soft-
ware that goes with?

| have to admit that we missed it. We didn’t see the new thing was
powerful because it was available for everybody. We were not
impressed by the software. | remember Windows 95, the news on
TV, people sleeping on the street to get it. | remember when | got
my first Windows version, with a box of 22 floppies or so. Then
| wanted to do something, to compile a program, but there was
no compiler. We were used to Unix, which was a basic system
but haa lot of utilities in it. Software was for us free, and we were
used to having it be free, and on a PC it was not free anymore.

Does that mean you didn’t have a personal computer until
late?

Yes. | think it was round 2000. | didn’t need it really. | got one
when the Belgian UUCP network became commercial. Of course
| did not get Windows on it. | think we got Linux here in 1994.
There was a guy involved in the kernel studying here. So we did
used it very fast.

So, what is software for you?

For me, software is the magic that makes computer usable. | can
only give examples of what | mean by it. A PC without software
— most people, even computer scientists, can’'t do anything with
it. You need basic software. Some software is already integrated
in the computer hardware. It is the same for phones, tablets. The
main characteristic, for me, is that it should be user friendly. That
is very difficult I know, because you have to imagine what the
people using your software are going to do with it and how they
want to use it. That's the magic you need to solve.

Is command line user friendly?

Well, somehow you have to learn the Unix command language;
it is in fact a computer language where you can make all the
constructs that other languages offers. You can create loops, you
can test, whatever. It's not so different from computer languages
like C or JAVA or whatever. It is certainly programmer friendly.

But it’s already software, no? User friendly depends on what
you put behind these words, no?

Yes it's already software. | don’t have a strong opinion about
command lines. It depends on people. | can imagine that some-
one that has never heard about the command line expects that
you click somewhere and it happens. But if you know the com-
mand language it's sometimes perhaps easier or productive to
type commands and let it run. Sometimes, | find it easier if | have
a screen and a number of buttons and | don’t have to imagine
what happens behind that screen. And sometimes | want to do
something with the command line, because I'm used to it. That's
why | don't trust myself about user friendliness because | have a
long experience in computer interfaces. I'm so used to some of
them perhaps | can’t even imagine that somebody else would like
to do it otherwise or doesn’t like what I'm used to.

Apart from maintaining the museum, what do you work on?
You are still active in the department even though you are
retired?

I work on sensors, in the Internet of Things world in one of the
university spin-offs. What | do for them is: wireless sensors need
power, most of them are on batteries. They have designed a com-
plete system which should make the battery last for two, three,
four years. They need a system to measure that. So | have been

46

47

working on a mechanism to measure that without waiting four
years. That's programming instrumentation computers to mea-
sure e.g. power or whatever. Most of it on Unix systems. There
are enough new or unknown things and maybe because I'm older,
| have another way of looking at things, so we have a lot of discus-
sions. They don't like my Perl, they use Python, JAVA and those
things. .. Perl, it has its disadvantages, but you can do a lot of
things. Every character has a meaning, that makes Perl programs
often unreadable. With Python, you need all those libraries. .. It's
easy when you know the libraries, what you have to call. When
you know the arguments of the librairies. So it's also complicated.
And if the library changes for some reasons, there you go. In my
humble opinion it's the same with all the languages. It starts easy
from scratch but if you have to interface them with existing things
from the Internet world or whatever it gets complicated.

Do you have a last word?

| was surprised by your group reaction to the visit. | thought all
of this was known. Maybe I'm getting old. Currently | don’t do
much about the museum department, but sometimes | like to talk
about the little stories about it. | remember a lot of little stories, a
lot of techniques that have been used and forgotten, and some
techniques that have been kept alive. | thought when | was young
that the best techniques would succeed. That you would have
visionary people who would see the way. But | realized that a lot
of things happen by accident.

s/ Ask several people

2 from different fields
and age groups the
same question:
“What Iis software?”

@ WHAT:: By paying close attention to the answers, and
possibly logging them, observations about the ambiguous place
and nature of software can be made.

F E | E | E E F

0 The answer to this question will vary depending on who is
asking it to whom.

EXAMFPLE

“It is difficult to answer the question ‘what is software’, but | know

what is good software” 18

“Software is a list of sequential instructions! Hardware for me is
made of silicon, software a sequence of bits in a file. But naturally
| am biased: I'm a hardware designer so | like to consider it as

unique and special”. 1°
“This, you have to ask the specialists.” 20

*what is software?
—the unix filesystem says: it's a file

——what is a file?

in the filesystem, if you ask xxd:
it's a set of hexadecimal bytes
what are hexadecimal bytes?

—b it's a set of binary 01s

if you ask objdump
it's a set of instructions
—side channel researching also says:

it's a set of instructions

—the computer glossary says:

it's a computer's program, plus the procedure for their use

http://etherbox.local/home/pi/video/A_Computer_Glossary.webm

#t=02:26

a computer's programs is a set of instructions for

performing computer operations

18 Jean Huens (system administrator at the department of Computer Science,

KULeuven)

19 Thomas Cnudde (hardware designer at ESAT - COSIC, Computer Security and

Industrial Cryptography, KULeuven)
20 Amal Mahious (Director of NAM-IP, Namur)

50

Notes on fileflowchart.raw.html = http://observatory.cons
tantvzw.org/etherdump/fileflowchart.raw.html

(& soURCE

Notes on Multiple Software Axes = http://observatory.con
stantvzw.org/etherdump/multiple-software-axes.m
d.raw.html

(& soURCE

& SEE ALSO!
Y Persist in calling everyone a Software Curious Person

=» P.116

51

METHOD

@

FMEM and
/IDEV/IMEM

WHAT:: Different ways of exploring your system memory
(RAM). As in unix-based systems everything can be approached
as a file, you can access your memory as if it were a file.

9@ UEGEMCY ! Observing the operational level of software,

getting closer to its workings. Examining the instruction-being of
an executable/executing file, the way it is when it is loaded into
memory rather than when it sits in the harddisk.

52

53

b
IN

F E M E (| E E F

In Unix-like operating systems, a device file or special file
is an interface for a device driver that appears in a file
system as if it were an ordinary file. In the early days
you could fully access your memory via the memory de-
vice (/dev/mem) but over time the access was more and
more restricted in order to avoid malicious processes from
directly accessing the kernel memory. The kernel option
CONFIG_STRICT_DEVMEM was introduced in kernel ver-
sion 2.6 and upper (2.6.36-2.6.39, 3.0-3.8, 3.8+HEAD). So
you'll need to use the Linux kernel module fmem: this mod-
ule creates /dev/fmem device, that can be used for ac-
cessing physical memory without the limits of /dev/imem
(1MB/1GB, depending on the distribution).

/dev/fmem tools to explore processes stored in the memory

ps ax | grep process
cd /proc/numberoftheprocess

cat maps

—> check what it is using

The proc filesystem is a pseudo-filesystem which provides an
interface to kernel data structures. It is commonly mounted at
/proc. Most of itis read-only, but some files allow kernel variables
to be changed.

dump to a file—>change something in the file—>dump new to a
file—>diff oldfile newfile

“where am i?”

(& soURCE

to find read/write memory addresses of a certain process

awk -F "-| " '$3 ~ /xw/ { print $1 " " $23' /proc/PID/maps

take the range and drop it to hexdump

sudo dd if=/dev/fmem bs=1 skip=$((16#b7526000 - 1)) \
count=$((16#b7528000 - 16#7b7526000 + 1)) | hexdump -C

http://observatory.constantvzw.org/etherdump/£fil
es.md 511-535

Besides opening the memory dump with a hex editor you can also
try to explore it with other tools or devices. You can open it as a
raw image, you can play it as a sound or perhaps send it directly

to your frame-buffer device (/dev/£fb0).

54

@@
@

08 be 51 00 00

bytectass range
o T1z80 oxport
Sk / 1155k

Y

=» P57

(& soURCE

WAERMI MG Although your memory may look like/sound
like/read like gibberish, it may contain sensitive information
about you and your computer!

Forensic and debugging tools can be used to explore and
problematize the layers of abstraction of computing.

SEE ALSON

Pan/Monopsychism

Notes on how to observe files ® http://observatory.const
antvzw.org/etherdump/files.html

56

Pan/Monopsychism

WHAT:: Reading and writing sectors of memory from/to
different computers.

@ METHOD

% UEGEMCY ! Memory, even when it is volatile, is a trace of
the processes happening in your computer in the form of saved
information, and is therefore more similar to a file than to a
process. Challenging the file/process divide, sharing memory

with others will allow a more intimate relation with your and
other’'s computers.

% AESUT ! Monopsychism is the philosophical/theological
doctrine according to which there exists but one intellect/soul,
shared by all beings.

SEE ALSON

FMEM and /DEV/IMEM

Y
= P52
MO TE (i The parallel allocation and observation of the same mem-
ory sector in two different computers is in a sense the opposite
process of machine virtualization, where the localization of multi-
ple virtual machines in one physical computers can only happen
by rigidly separating the memory sectors dedicated to the different
virtual machines.

Hixbl:

WARMIMG . THIS METHOD HAS NOT BEEN TESTED.
IT CAN PROBABLY DAMAGE YOUR RAM MEMORY
AND/OR COMPUTER.

First start the fmem kernel module in both computers:

sudo sh fmem/run.sh

Then load part of your computer memory into the other computer
via dd and ssh:

dd if=/dev/fmem bs=1 skip=1000000 count=1000 | \

ssh user@othercomputer dd of=/dev/fmem

Or viceversa, load part of another computer’s memory into yours:

ssh user@othercomputer dd if=/dev/fmem bs=1 skip=1000000 count=1000 | \
dd of=/dev/fmem

Or even, exchange memory between two other computers:

ssh user@firstcomputer dd if=/dev/fmem bs=1 skip=1000000 count=1000 | \

ssh user@secondcomputer dd of=/dev/fmem

58

(& soURCE

59

pan/monopsychism:
(aquinas famously opposed averroes..who's philosophy can be

interpreted as monopsychist)

shared memory

copying the same memory to different computers

https://en.wikipedia.org/wiki/Reflection_%28

computer_programmaing%29

it could cut through the memory like a worm

or it could go through the memory of different computers one

after the other and take and leave something there

Note-snippets and code speculations during the TGSO-worksession:
http://observatory.constantvzw.org/etherdump/£fil
es.md.diff.html

TEMPORALITY
Constellations of time and locality

2| [T]he railroad, which worked a revolutionary

61

change in civilization. It increased the tempo
of business activities [. . .] The foundation
on which our business is built is the saving of
time for all people and all industries
throughout the world, to give more time in
which to do given tasks, and to make available
more time for still further advancement and
progress. The railroads and [IBM] [. . .] have
a common mission—both function to increase
the profi ts and accelerate the progress of
business by conserving the most precious of all
commodities — TI M E."21

The concept of time sharing was developed in
the late 1950s, mainly motivated by the aim to
make efficient use of expensive mainframe
computers by avoiding idle times. Time sharing
refers to the (seemingly) simultaneous access
of multiple users that are connected via
terminals to a central computer, technically
based on the flexible allocation of CPU time to
concurrent user processes. The first
experimental implementation, the Compatible
Time Sharing System (CTSS), was deployed at
the MIT in 1961 on an IBM 709 computer, 22

2% john Harwood: The Interface: IBM and the Transformation of Corporate Design,
1945-1976. English. 1 edition. Minneapolis, MN: Univ Of Minnesota Press, Nov.
2011. 1sBN: 978-0-8166-7039-0, pg.102

22 christoph Neubert: The Tail on the Hardware Dog. English. In: There is no
Software, there are just Services. Ed. by Irina Kaldrack and Martina Leeker.
Liineburg, 2015, pp. 21 —37. I1SBN: 978-3-95796-055-9, pg.25

| [M]achines have their natural cycle: the
vibrating pulses of its internal clock drives
the cycles according to which the processor
works. The time of the computer is linked to
this clock cycle, as it consists in counting
cyclical ticks. This produces a cyclical time
rhythm in the hardware, on which time
experience in the software is based. However,
time in a computer is no unique or unified
experience. Several hardware components and a
diverse collection of software organised in
layers and processes create a whole ecology of
interdependent time experiences.?3

iz | Real time is defined as time measured from some
fixed point, either from a standard point in the
past (see the description of the Epoch and
calendar time below), or from some point
(e.g., the start) in the life of a process
(elapsed time). Processtime is defined as the
amount of CPU time used by a process. This is
sometimes divided into user and system
components. User CPUtime is the time spent
executing code in user mode. System CPU time is
the time spent by the kernel executing in
system mode on behalf of the process (e.g.,
executing system calls). The time2* command

28 Hans Lammerant: How Humans and Machines negotiate the Experience of Time.
2017

24 https://1linux.die.net/man/1/time

62

63

can be used to determine the amount of CPU
time consumed during the execution of a
program. A program can determine the amount
of CPU time it has consumed using times?5,
getrusage?®, or clock?7.28

25 https://linux.die.net/man/2/times

26 https://linux.die.net/man/2/getrusage

27 https://linux.die.net/man/3/clock

28 time was written by David MacKenzie. The man page was added by
DirkEddelbuettel: TIME(1) General Commands Manual

Space-Noise
Rearrangements

METHOD

@ WHAT!:: Interventions in your working-environment.

Hol i Different strategies can be applied to temporarily
redefine the workspace and its perceptual structures.

@l@ URGSEMCY 11 Acknowledging space and its correlated noise,
as conditioning observations (the World Trade Center
vs. Museum vs. University vs. Startup Office vs. Shifting Walls
that became Water Fountains).

MO TE it EU-OSHA (European Agency for Safety and Health at
Work) Directive 2003/10/EC describes the minimum health and
safety requirements regarding the exposure of workers to the
risks arising from physical agents (noise). However no current
European guidelines exist on the potential benefitial uses of tac-
tially designed additive noise systems.

Fountain refreshment: augmenting a piece of standardized office
equipment designed to dispense water to perform a decorative
and soothing function.

EXAMFPLE

64

Actual silence is not at the moment considered comfortable.
One of the visible symptoms of our desire to take the edge
off the silence can be observed through the appearance of
fountains in public space. The fountain’s purpose is to give
off neutral sound, like white noise without the negative
connotations.

MO TE i Gaining access to standardized water dispensing equip-
ment turned out to be more difficult than expected as such equip-
ment is typically licensed/rented rather than purchased outright.
Acquiring a unit that could be modified required access to sec-
ondary markets of second hand office equiment in order to pur-
chase a disused model.

One-way mirrors can be used to partition your working environ-
ment in a 4-dimensional way.

As the foil reacts to light, it appears transparent to someone
standing in the dark, while leaving the side with the most light
with an opaque surface. Using this foil as room dividers in a
room with a changing light, what is hidden or visible will vary
throughout the day. So will the need for comfortable silence.

EXAMFPLE

These two examples of Space-Noise Rearrangements were devel-
oped by Mia Melvaer s http://www.miamelvaer.com/t
echnogalactic.

(& soURCE

65

69

I hope you are comfortable, [insert name]

For the past 100 years the western ideal of a corporate landscape
has been moving like a pendulum, oscillating between grids of cu-
bicles and organic, open landscapes, in a nearly perfect 25-year
rhythm. These days the changes in office organization is supple-
mented by sound design in corporate settings mostly to create
comfortable silence. Increase the sound and the space becomes
more intimate, the person at the table next to you can not imme-
diately hear what you are saying. It seems that actual silence in
public and corporate spaces has not been sought after since the
start of the 20th century. Actual silence is not at the moment con-
sidered comfortable. One of the visible symptoms of our desire
to take the edge off the silence is to be observed through the
appearance of fountains in public space. The fountain’s purpose
is to give off neutral sound, like white noise without the negative
connotations. However as a sound engineer’s definition of noise
is unwanted sound that all depends on one’s personal relation to
the sound of dripping water.

This means that there needs to be a consistent inoffensiveness
to create comfortable silence.

In corporate architecture the arrival of glass buildings were origi-
nally seen as a symbol of transparency, especially loved by gov-
ernmental buildings. Yet the reflectiveness of this shiny surface
once combined with strong light — known as the treason of the
glass — was only completely embraced at the invention of one-
way-mirror foil. And it was the corporate business-world that would
come to be known for their reflective glass skyscrapers. As the
foil reacts to light, it appears transparent to someone standing in
the dark, while leaving the side with the most light with an opaque
surface. Using this foil as room dividers in a room with a changing
light, what is hidden or visible will vary throughout the day. So will
the need for comfortable silence.

Disclaimer :

Similar to the last 100 years of western office organisation,
this fountain only has two modes:

on or off

If it is on it also offers two options:
cold water and hot water

This fountain has been tampered with and has not in any way
been approved by a professional fountain cleaner. | do urge you
to consider this before you take the decision to drink from the
fountain.

Should you chose to drink from the fountain, then | urge you
to write your name on your cup, in the designated area, for a
customised experience of my care for you.

| do want you to be comfortable.

Mia Melvaer, June 2017

70

METHOD

LWHAT

71

“Nannyware™:
Software that
observes and
addresses the user

Nannyware is software meant to protect users while limiting their
space of activity. It is software that passive-aggressively suggests
or enforces some kind of discipline. In other words, create a form
of parental control extended to adults by means of user experi-
ence/user interfaces.

Nannyware is a form of Content-control software: software de-
signed to restrict or control the content a reader is authorised to
access, especially when utilized to restrict material delivered over
the Internet via the Web, e-mail, or other means. Content-control
software determines what content will be available or be blocked.

Hi bl

[. .. Restrictions] can be applied at various levels: a
government can attempt to apply them nationwide (see
Internet censorship), or they can, for example, be applied by
an ISP to its clients, by an employer to its personnel, by a
school to its students, by a library to its visitors, by a parent
to a child’s computer, or by an individual user to his or her
own computer. 29

Unlike filtering, accountability software simply reports on
Internet usage. No blocking occurs. In setting it up, you
decide who will receive the detailed report of the computer’s
usage. Web sites that are deemed inappropriate, based on
the options you’ve chosen, will be red-flagged. Because
monitoring software is of value only “after the fact”, we do
not recommend this as a solution for families with children.
However, it can be an effective aid in personal accountability
for adults. There are several available products out there. 30

29 wikipedia contributors: Content-control software — Wikipedia, The Free

Encyclopedia. 2018

30 TechMission UrbanMinistry.org: SafeFamilies.org | Accountability Software:

Encyclopedia of Urban Ministry. 2018

72

As with all new lifestyle technologies that come along, in the
beginning there is also some chaos until their impact can be
assessed and rules put in place to bring order and respect
to their implementation and use in society. When the
automobile first came into being there was much confusion
regarding who had the right of way, the horse or the car.
There were no paved roads, speed limits, stop signs, or any
other traffic rules. Many lives were lost and much property
was destroyed as a result. Over time, government and
society developed written and unwritten rules as to the
proper use of the car. 32

Disadvantages of explicit proxy deployment include a user’s
ability to alter an individual client configuration and bypass
the proxy. To counter this, you can configure the firewall to
allow client traffic to proceed only through the proxy. Note
that this type of firewall blocking may result in some
applications not working properly. 2

The main problem here is that the settings that are required
are different from person to person. For example, | use
Workrave with a 25 second micropause every two and a half
minute, and a 10 minute restbreak every 20 minutes. | need
these frequent breaks, because I'm recovering from RSI.
And as | recover, | change the settings to fewer breaks. If
you have never had any problem at all (using the computer,
that is), then you may want much fewer breaks, say 10
seconds micropause every 10 minutes, and a 5 minute
restbreak every hour. It is very hard to give proper
guidelines here. My best advice is to play around and see
what works for you. Which settings “feel right”. Basically,
that's how Workrave’s defaults evolve. 33

HEGEMCY

K

ExAMFPLE

31 Content Watch Holdings, Inc.: Protecting Your Family. 2018
32 websense.com: Explicit and transparent proxy deployments. 2012
33 workrave.org: Frequently Asked Questions. 2018

73

Why not

take a break?

You can pause the game
by pressing @

| WiiSports

() Siempo
(\b_,) Gesponsord - @

Siempo is a new phone that is designed to help you

reclaim control over your time and attention.

It features all the essentials like calling, texting, wi-fi

hotspot and maps, while limiting access to the
services that tend to interrupt us throughout the da:

The Mindful Morning feature helps you create a
distraction-free morning routine and the dedicated

Pause button helps you hit mute on the digital world|

for a set period of time.

We'relaunching shortly — sign up below to be the fi
in line for Siempo

Carrier @ 7:59 PM T
o saturday 9 May 2015 & | J
Only 24 oz to go!
You've logged 400z
& v [

-
v
Daily Goal Goal by 5:00 PM
64 oz 64 oz

A Edit Drinks Q

74

®©00

[Ttiny-termina -care — {9

Today
wiminﬂ-care

QEQ -
-
@ Q'

Always get plenty of sleep, if you can

- Your friends at Slack

@ SiteCoach content filter

— Week

/Users/nom
6889476 —
93de426 -
2b446fa —
eac7fdf -
d75de24 -
8f98ce4 —
c5a7doe —
7d9258b —
98ab797 -
68c07c7 —
b2e9820 —
eeal452 -
0693a6e —
caa2bae —

[N SHHH

S
1

kiosks.org
public.ch
browser.de

O
terminal.info
digital.be

nitAl ATRTArnAT Ti

Access Denied

SiteCoach thinks this website contains content harmful to
a young public. The page was blocked!

Reason:

Forbidden Keyword pedophillia!

Please provide us a brief comment, if you believethat this
webpage has been blocked wrongly

Hi, this is my site and I'm a
syndicated columist in papers

across the U.S. and Canada. The
a 3 3 iidond] O

<] T[>

(o) (s)

(24 ho

ago)

f7c1786 — twitter helper returns what account the tweet is from (24 hours
585af3b — make standup helper care about days (24 hours ago)

75

)—' tiny care terminal,*ﬂ' — node care.js — 164x42

—Commits —
In San Francisco, CA it's 16C and most:
right now. Today, it will be mostly ¢1lc
the forecasted high of 18 and a low ¢f

-

Not sure how to meditate? Maybe downlo:

mindfilness anp for your phone!
Listening at a high volume for
a long time may damage your
hearing. The volume will be hears of a beehive loja
increased above safe levels. pvotes her life to findil

] Cancel OK 8
N\,

4 hours

ours ago)

76

- Rest break - o IE|
Shoulder-arm stretch
nostly sul
/ ,,loudy Keep one arm horizontally stretched in front of
v oF 11 your chest. Push this arm with your other arm
. towards you until you feel a mild tension in
your shoulder. Hold this position briefly, and
repeat the exercise for your other arm.
in]oad a
Exercises player: .
. . Rest break for 9:40 minutes |
lo¢ated il
inding it -
Lock | | Skip | | Postpone |

Ol 11503 1155

I =

o
]

Uh, this is being posted publicly.
Are you sure you want your boss
and your mother to see this?

< » O OO

O

77

(& souRcE

This method was developed by Silvio Lorusso, and presented
during the worksession. Excerpts taken from his presentation
(and related websites): A Constellation of -Wares, Some Thoughts
on Mandatory Entrepreneurialism, Work Ethic Dystopia, Psycho-
Cybernetics, Nannyware, and the Rhetoric of Software. The full
source can be found at: https://cryptpad.fr/slide/#/1/
view/p8EiphzdeHeVE1lyI3NIGEQ/hWWCDdvOB+ulWbxgpk9
Y9Q2ixCSShE8TQRxjRoM80aA/

78

slUseless scroll
s against productivity

(& soURCE

83

<

useless scroll against productivity

This method was discovered at the end of an etherpad that contained
collective notes from the Technogalatic Observation sessions taking
place on Friday 8 June, 2017. = http://observatory.const
antvzw.org/etherdump/friday.md.diff.html

Sat 16:09

pi@etherbox

Help

individual files in /usr/share/doc/*/copyright.

= Terminal ¥
Terminal

.

sarch

Places =

| Debian GW/Linux cones vith ABSOLUTELY NO WARRANTY; to the extent

 pernitted by applicable law.

* Activities

Last login: Sat Jun 10 13:58:08 2017 from debian.lan

"SSH is enabled and the default password for the

ged.

* user has not been chan

pi
This is a security risk - please login as the 'pi' user and type 'passwd’ to set a new password.

Current Time in Millennium Unix Time: 650380333

4

T

Q

/

F2
/ A

oiostherboxi- 88 -
5
'y
7
- 4

';/Capsté
'

/

The ends of time

METHOD

@ WHAT:: Command line scripts to investigate computer clocks,
system cycles, and software temporalities.

H¥AMPLE:: Sundial Time Protocol Group tweaks

printf 'Current Time in Millennium Unix Time:
printf $((2147483647 - ‘date +%s'))
echo
sleep 2
echo $(('cat ends-of-times/idletime’ + 2)) \
> ends-of-times/idletime
idletime="cat ends-of-times/idletime’
echo
figlet "Thank you for having donated 2 seconds to \
our $f{idletime} seconds of collective SSH pause "
echo

echo

85

@XHMPLE i1 The Year 2038 problem 34

Exact moment of the epoch: 03:14:07 UTC on 19 January 2038

local UNIX time of this machine

date +%s

UNIX time + 1

echo $(('date +%s' +1))

@ ®AMPLE:: Goodbye unix time

while :
do

sleep 1

figlet $((2147483647 - ‘date +%s'))
done

@ SEE ALSO:
Y How humans and machines negotiate the experience of time
= P.89

@& SEE ALSO:.
Y Useless scroll against productivity
=» P79

34 https://en.wikipedia.org/wiki/Year_2038_problem

86

(& soURCE

87

Method extracted from notes on the ends of time. = http://o
bservatory.constantvzw.org/etherdump/ends-of-tim
e.html On the following pages a reflection by Hans Lammerant,
How humans and machines negotiate the experience of time.

89

How humans and machines negotiate the
experience of time

The experience of time is an essential element of any form of
experience or cognition. Emotions depend to a large extent on ex-
pectations, or the potential coming of a future event. Any observ-
ing or experience of difference, of presence related to an earlier or
later absence, is linked with an experience of time. However, how
the actual experience of time is shaped is strongly influenced by
all sort of design decisions and implementations, both for humans
and machines. Also, the experience of time is a conglomerate of
different experiences: time as a common moment, the duration
of a certain time, time as cyclic events, historical time, and so on.
Researching how humans and machines experience time and ne-
gotiate their time experiences is therefore an interesting avenue
to explore

Humans have developed a time experience which was linked to
natural life cycles, but it has been influenced by both technology
and social conditions. The first time cycle is the day-night time cy-
cle. Humans do their stuff during the day, but need to sleep. The
night is generally the preferred time for sleep, but the availability
of artificial light and the need for long-distance coordination has
influenced how humans deal with the day cycle and the place for
sleep in it. Part of this experience is measuring time. Early time
measurement was linked to observation of natural conditions like
sunrise and sunset. Measurement of such sun cycles (which is
in fact an earth cycle) through sundials allowed for more precise
time referencing, but it is very place and season dependent. More
light during summer than winter implied that hours were longer
in summer than in winter. Similarly such changes were greater
at higher latitudes, while near the equator such changes are lim-
ited. In other words, time measured by sundials provided a local
common reference of time, but not one common time over longer
distances.

This seasonal time experience when the human world was flat
reflects the unknown spherical geometry of the earth cycle pro-
jected on the flat earth. When humans became aware of earth
as a sphere, they responded by flattening and linearising time.
Mechanical clocks allowed for the unification of time lengths and
thereby also standardized time. Physical observation and all sorts
of economic processes needed such standardized time measure-
ment. Early versions of such time measurement, like hourglasses,
existed but remained disconnected from day time measurement.
Mechanical clocks also allowed for the unification of different
time cycles and scales and for the standardization of time over
longer distances, departing from the local sundial time to time
zones, which were less strictly linked to the seasonal rhythm of
the sun and more to geographical zones. Long distance trade,
industrialization and later long distance communication by electro-
magnetic signals (comparable to the speed of light) demanded
more geographical coordination. In the nineteenth century, coor-
dination developed through clock networks, with a master clock
driving the slave clocks. Nowadays we work with atomic clocks
and a global Coordinated Universal Time or UTC as a reference
to which geographical time zones are connected. Humans orga-
nize their activities accordingly, if necessary by de-linking from the
solar rhythm. The borders of time zones diverge very often from
the longitudinal lines for economic and political reasons. A simi-
lar socialization and globalization of time occurred for computers.
Where in the early computer age time was set and counted locally
by each machine, it is now common to continuously synchronize
time over the Internet through time servers and the Network Time
Protocol. Humans get woken, cron jobs get triggered, precision
bombs get guided, and trains count their delays in measure with
the drill signal of the Master Clock of the US Naval Observatory,
only differing by tiny variations in latency times.

90

91

Humans have also developed ways to relate to time on longer
scales, which were originally linked to natural rhythms: years, life
cycles. Calendar systems are used to determine seasonal agricul-
tural needs (when to plant, when to harvest), while they also make
it possible to keep track of life cycles and historical time. Again,
such calendar systems have been very diverse and local, but have
been slowly fused to a couple of dominant models. Generational
or birth, life, and death rhythms, originating from the human expe-
rience, have been projected on all sorts of phenomena. Religions
tried to explain the origin of everything, while also often predicting
the end in apocalyptic visions. The demise of religion at the hand
of science did not let such generational visions disappear. They
got new expressions in scientific theories of the beginning (big
bang, evolution) and end (the heath death of the universe, the end
of the earth at the final burnout phase of the sun) of everything.
Similar apocalyptic visions are now embedded through techno-
logical design decisions (Y2K, the end of Unix-time in 2038). In
all versions the end is often linked to the specific design of time
(e.g. the end of the Maya calendar, millenarian movements). But
just like religious visions can extend their apocalypse in a new
versions (e.g. the always near but always delayed apocalypse of
the Saints of the last days), machinic accounts of time can always
be extended by enlarging the bit size of the time range (cfr the ex-
tension of Unix time till AD 292277026596, or safely after the end
of the observable universe according to contemporary physics).

The time(s) of the machine

Machines also have their natural cycle: the vibrating pulses of
the internal crystal clock drives the cycles according to which the
processor works. All PCs have such a Real Time Clock (RTC),
independent of the processor. The time of the computer is linked
to this clock cycle, as it consists of counting cyclical ticks. This

produces a single cyclical, and completely linear, time rhythm in
the hardware. In contrast to the earthly or natural cycles it is with-
out any seasonal difference or interference between several cy-
cles. This makes a computer into a monadic time capsule, dis-
connected from the outside rhythms. The time experience in the
software is in principle based on this local time cycle. However,
once computers and software gets linked and networked, they
have to negotiate and synchronize their times. To start, time in a
computer is no unique or unified experience. Several hardware
components and a diverse collection of software organised in lay-
ers and processes create a whole ecology of interdependent time
experiences. The operating system experiences other software
components, and users through them, as a bunch of processes
screaming for attention. One of the most pushy interrupts is the
timer forcing the processor to count another click and update the
system time. An internal kernel process performs the negotiation
of time through which the clock count is linked with a system time.
This starts already during the booting process, when the operat-
ing system is determining the clock signal frequency. PCs have
another time-measuring device, the Programmable Interval Timer
(PIT), which can be set by the processor at a defined frequency.
During a short time indicated by this PIT, the clock cycles of the
RTC get counted and the frequency of the RTC gets calculated.
Several other timing devices are present in the hardware, synchro-
nized by kernel processes into a range of times available for the
operating system and the processes. As said, one of these times
is avail able as system time and gets communicated to all other
processes when demanded. With the advent of the Internet, com-
puters are not monads anymore, but are socialized in the common
rhythm broadcasted with the Network Time Protocol. The local
system time serves as back up, but gets continuously adapted to
the network time. On a Ubuntu/Debian machine these times can
be checked with timedatectl status. The timedatect/ command

92

93

enables to change these synchronisation processes. The actual
synchronisation is done by the timesyncd process and the time
servers to be used can be set in the /etc/systemd/timesyncd.conf
file. Other Linux flavours work with the older ntp process which
can be configured in /etc/ntp.conf.

The actual process time is completely different from this system
time. Most of the time is in the process of making time to do it.
Most of the time processes are put on hold and when the sched-
uler gives them time they can proceed till the next on hold is forced
to make time for another process. The scheduler is the big orga-
nizer of time in the internal ecology of processes. System time
is externally counted and therefore an external global variable to
these processes. They can all send a demand to the kernel to get
the system time. This gets communicated through the software
stack with a range of system calls of the kernel and through the
specific time modules of the programming language the software
is programmed in. The difference between the actual process
time and system time does not appear in how time is perceived
by the process. The process only perceives time as the difference
between two demands of system time and is oblivious of its time
being put on hold. The processor on the other hand spent most of
its processing time as idle time: a processor is doing time waiting
for slow system components like memory and even slower hard
drives and network connections to respond and switches between
checking for responses of these laggards. L'enfer du temps perdu,
ce sont les autres.

Connecting computers into a network demands new negotiations
of time. We have already mentioned the networked and globalised
UTC timekeeping. But temporal negotiations happen on all levels
of the system. Network protocols have timed choreographies to
make connections and proceed with communications, with time
out fail-safes to break off when something goes wrong. The timing

of an action is an essential component making the difference be-
tween a meaningful signal and noise. Using a browser over http
to connect to a website, or more accurately the server providing
the website on your request, is a process built on a discontinuous
time practice. In a REST architecture the server just deals with a
gueue of requests and does not see continuity over time between
certain requests from a single user. New temporal practices have
been designed and technically implemented. Through cookies,
the server is able to recognise users and their state in time. The
border between your computer and servers on the internet be-
comes fuzzy when external software is dropped on your computer
and runs in your web browser. Javascript modules get dropped
on your computer and can start performing tasks on demand of
an external server, be it rendering a graph or mining digital money.
Similarly, the browser becomes a border where time gets nego-
tiated through synchronization processes. What time exactly is
depends on the task at hand. Each tool contains its specific tem-
poral practices, dependent on the speed and subject matter of the
synchronization process needed. For example, for collaborative
document editing tools like Google Docs or Etherpad it is a se-
quence of versions of the document. A range of strategies have
been developed to synchronize the changes made by different
users with the least amount of conflict. The Easysync-protocol
used by Etherpad constructs a document from changesets. A
changeset details the edits made by a user or the difference with
the former local version of the text. In other words, the flow of
time is represented through a series of changesets which can
be summed to the present state. The server keeps a sequence
of acknowledged changesets. These acknowledged changesets
represent the current common state and get communicated to all
clients. Locally each client builds its present state by summing
up the acknowledged changesets received from the server, and
with the local changesets which are not yet acknowledged. Each
client communicates its local changesets, every 500 ms after the

94

95

latest acknowledgment. As this changeset can be relative to an
earlier version the server first recalculates a changeset relative
to the current version. Then it sends an acknowledgment to the
sender and the changeset to the other clients. Different collabo-
rative document editing tools use different methods to deal with
conflicts, which also are dependent on the purpose or content of
the document. Conflicts between numeric edits in a collaborative
spreadsheet are dealt with differently than conflicts between text
edits. But what is common to both is that the present gets con-
tinuously constructed both on the server and on the clients and
negotiated through the specific protocol. The user can always
access its local copy of the text and create its local present, but
this local present then gets negotiated with the server to create a
common present. And every tool rings also its own disasters and
apocalyptic experiences through the collapse of the negotiation
process and thereby of the common state.

This negotiation of time is in the first place a negotiation of the
present. But also what is past and future gets constructed in this
present. The ordered sequence connected to the system time(s)
already imply such a past and future. But the construction of a
past consists also of a negotiation of what remains and what gets
forgotten. Data gets stored in memory or written to storage de-
vices, while the operating systems assigns time stamps to these
traces of the present becoming past and writes other traces to
a range of log files. As writers trying to capture their stream of
consciousness already experienced, it is impossible to completely
store the present for future use as past. There will always be a
remainder that escapes and can not be written down. Similarly, an
operating systems can not keep a log of all its operations without
getting stuck in an infinite regress in which it tries to log its logging
operations. What will be the past for a future present needs to be
constructed and selected. Everything else gets forgotten. Linux

stores its logs in /var/log, while all sorts of programs can create
their own logs. All these logs are specific histories, for example
of what programs got installed. To get an idea of your past on a
Linux system in the file system, you can collect the timestamps of
all files with:

os.system("ls -R -1 --time-style=long-iso \
> modlistsystem-long-iso.txt")

os.system("ls -R -1lu --time-style=long-iso \
> accesslistsystem-long-iso.txt")

Renegotiating time with your computer: sundial
network time.

Technology has been a tool through which humans create dis-
tance from natural cycles and design their own time experiences.
This means we can critically intervene in the functioning of the
technology and develop alternative time practices and experi-
ences. As an example we put forward as a not-yet-existing-proof
of concept the possibility to let the computer work according to
sundial time. Is it possible to reconfigure the time of the computer
and rewire the connections with human and natural rhythms?
Would we be able to let the computer function in an older hu-
man time experience, e.g. the time of the sundial? How can such
sundial experience be built into the system and what would be the
impact on the user? Sundial time is a geographically and season-
ally localised time. It also includes a distinction between day and
night. The night is ‘out of time’. This distinction has been extra-
dited from linear time practices, where the amount of light is just
a variable external to steady beat of time. Linear time turns the
night into economically productive time. Running your computer
on sundial time re-introduces the night in your system.

96

97

An intervention to introduce sundial time in your computer is pos-
sible in the whole range of places we discussed where time gets
negotiated. The most fundamental but also most difficult route
would be to exchange the clock with something reflecting a more
natural rhythm. However, as we have seen that this clock has be-
come only a back up tool and that the actual system time is always
renegotiated with other systems connected through the network,
another renegotiation process can be introduced. Therefore, the
most easy way to introduce sundial time would be to reconfig-
ure the timesyncdor ntp processes and make them listen to an
alternative sundial time server. Such a sundial time server can
be built in different ways. A hardware version can be made of
a sundial combined with light sensors, measuring the location of
the shadow through the difference in light and deriving the sun-
dial time from this location. This would link the time server to the
actual earthly day and night cycle. A simulated version could be
a local piece of software which looks up the timing of sunrise and
sunset at the specific location and day. Based on this information
it recalculates the local sundial time, which it provides through
the NTP protocol. The local computer receives this sundial time
from the nearest sundial time server and continuously adapts its
system time, as it does now already based on UTC. Further, it
can be programmed to go into sleep modus during the night and
to wake up only when a sunrise signal is received from the time
server.

Letting a computer run on sundial time is a conscious effort to
disconnect it from human-made linear time and to reconnect it
with the old earth-driven cycles and the ancient time experience
by humans. The unified time of UTC and the time zones gets
broken up into extremely localized time servers, and the differ-
ence between day and night gets introduced into the functioning
of the computer. This re-enactment of such cycles through the
computer will remind human users that the experience of time

F

is a socially negotiated and technically implemented experience.
Further, a computer running on sundial time would be a great
piece of nannyware nudging the user to live in harmony with his
natural environment and a synchronization tool to re-establish
the link between the users bio-rhythm and the earthly day and
night cycle. It would also be a great reminder why humans tried
in the first place to escape from these earthly rhythms through
technology and started hacking time.

Hans Lammerant, June 2017 - January 2018

MOTE ! This text was written in and in resistance/conflict to
WTC time, which is exemplary for the bureaucratic office time ex-
perience. The WTC building boots up at 9AM and is turned off
in several steps (at 5PM the air conditioning is turned off, later
entrances close) into a wake state. The concierge can let you in
and out through the night side entry, but main life support systems
remain turned off outside office hours. This wake state continues
during the weekend, turning the building into a glass house with
limited air in storage. On Monday morning this bureaucratic time
capsule revives from its slumber. A suffocating experience, but ac-
tually the building is a great piece of nannyware nudging towards
a healthy office rhythm without too much extra hours outside the
herd work ethic.

Such office time can also be implemented and negotiated on your
local computer. A small Proof of Concept was the adapted bashrc
on the etherbox simulating a system getting bored and stealing
time. This can be further developed by including a differentiated
response during versus outside office hours, aging (slower when
timestamp of original install is more remote in time), etc.

98

I INIDAUDUNAL

I_ pnititw dpuoini\es s1switoe pnivisadO

l

LANGUAGING
Observing software as/through writing

Motivation:

- capitalism as sorcery (Isabelle Stengers): we
are under the black magic of capitalist
wor(l)d making

- reclaim a power of saying: we have the
feeling that some words are imposed on us?3®

:|She is in search of “a different alphabet, a
different language,” a means of communication
which would be "constantly in the process of
weaving itself, at the same time ceaselessly
embracing words and yet casting them off to
avoid becoming fixed, immobilized. 3¢

| It is surprising how rarely language appears in
the list of relevant programming metaphors,
despite periodic attempts to envisage program
code as a form of literary expression. It is as
if we have become so accustomed to think of
programming languages as languages - that we
forget that this analogy has its own history. 37

35 Techno-Galactic Software Observatory: Notes from the Observatory on glossaries
and vocabularies. 2017

36 sadie Plant: Zeroes and Ones: Digital Women and the New Technoculture. English.
1st edition. New York: Doubleday, Sept. 1997. IsBN: 978-0-385-48260-8, pg.140

37 David Nofre, Mark Priestley, and Gerard Alberts: When Technology Became
Language: The Origins of the Linguistic Conception of Computer Programming,
1950-1960. en. In: Technology and Culture 55.1 (Mar. 2014), pp. 40-75. ISSN:
1097-3729. pol: 10.1353/tech.2014.0031. Visited on Jan. 31, 2018, pg.43

101

2|We write on paper, but we write to a magnetic
disk (or tape). Part of what the preposition
contributes here is a sense of interiority;
because we cannot see anything on its surface,
the disk is semantically refigured as a
volumetric receptacle, a black box with a
closed lid. If we were writing on the disk we
would be able to see the text, like a label.
Instead, the preposition of choice, “to,”
becomes a marker for our intuition that the
verb “write” is not altogether appropriate, a
rough fit at best. 38

22| Just as freedom of speech is a convenient myth
under which something else entirely can safely
be left to occur, the ideal of a word processor
is that it creates an enunciative framework
that remains the same whether what is being
written is a love letter or a tax return. What
kind of language is the language of Word?3°

38 Matthew Kirschenbaum: Extreme Inscription: Towards a Grammatology of the Hard
Drive. In: TEXT Technology 2 (2004). Visited on Jan. 31, 2018, pg.101

39 Matthew Fuller: Behind the Blip: Essays on the Culture of Software. English.
Brooklyn, NY: Autonomedia, Mar. 2003. 1SBN: 978-1-57027-139-7, pg.146

102

Quine

METHOD

@ WHAT:: A program whose function consists of displaying its
own code. Also known as “self-replicating program.”

‘?@ LWHY i Quines show the tension between “software as
language” and “software as operation.”

Hw ' By running a quine you will get your code back. You
may choose to go a step further and wonder about functionality
and aesthetics, uselessness and performativity, data and code.

@XQMPLE i+ A quine (Python). When executed it outputs the
same text as the source:

s = 's = %r\nprint(s¥¥%s)"’

print(s%s)

@XQMPLE i+ A oneline unibash/etherpad quine, created during
relearn 2017:

103

wget -q0- "http://192.168.73.188:9001/p/quine/export/txt" | \
curl -F "file=@-;type=text/plain” \
"http://192.168.73.188:9001/p/quine/import"

%‘The encounter with quines may deeply affect you. You may want

0 write one and get lost in trying to make an ever shorter and
more elegant one. You may also take quines as point of departure
or limit-ideas for exploring software dualisms.

“A quine is without why. It prints because it prints. It pays no atten-
tion to itself, nor does it asks whether anyone sees it.”

“Aquine is aquine is aquine.”

Aquine is not a quine.

This is not aquine.

F E M E M E E F

Although seemingly absolutely useless, quines can be used
as exploits.

Exploring boundaries/tensions
databases treat their content as data (database punctualization)

some exploits manage to include operations in a database

@ SEE ALSO:
Y Pan/Monopsychism
» P57

104

This method is part of Aquine, a discussion of and research into
dualism in software. Notes: http://observatory.constantvz
w.org/etherdump/auginas.diff.html

(& soURCE

105

Glossaries as an
exercise

METHOD

WHAT:: Using the technique of psychoanalytic listening to
compile (gather, collect, bring together) a list of keywords for
understanding software.

<>:a Hauli: Create a shared document that participants can add
Words to as their importance emerges. To do pyschoanalytic
listening, let your attention float freely, hovering evenly, over a
conversation or a text until something catches its ear. Write down
what your ear/eye catches. When working in a collective context
invite others to participate in this project and describe the
practice to them. Each individual may move in and out of this
mode of listening according to their interest and desire and may
add as many words to the list as they want. Use this list to create
an index of software observation.

9 URGEMCY ! Not creating and troubling categories on a
regular basis rlsks path determinacy.

MO TE i Do not remove someone else’s word from the glossary
during the accumulation phase. During the editing phase (which
comes after the conclusion of the accumulation phase and is ide-
ally conducted through collective consensus), you can mark them
for attention. If possible, keep traces of those terms nominated
for removal or merging.

MO TE 1 There was no consensus regarding the preceding note.

Sme S

106

LWARMI MG This method is not exclusive to and was not

developed for software observation. It may lead to aware-
ness of unconscious processes and to shifts in structures of
feeling and relation.

wSOURCE

107

Notes on vocabulary m» http://observatory.constantvzw.
org/etherdump/vocabulary.md.diff.html

Agile
Aquine
Authority
Attack

Bash
Battery
Beast
Bestiary
Bounce

Bug

Clouds

Code
Colonial
Comfortable
Command Line
Communication
Compile
Comportment
Connectivity
Contract
Corporate
Crash
Curious
Daemon
Dirty
Emotional
Flow
Fountain
Galaxies
Gooey

Green

Guide

Hand

Icon

Intake
Intimate
Imperial
Issues
Kernel
Libraries
Machine
Magic
Mantra
Memory

108

109

Museum
Naming
Noise
Observation
Passive-aggressive
Parental
Pause
Perception
Power
ProductionPower
Programmers
Progress
Promiscuous
Public
Punch

Quine

Quit
Relational
Red
Scripting
Scroll
Scrum
Silence
Spin
Spindle
Software
Softwear
Sundial
Survival
Technology
Test

Thank you
Time
Trailing
Urgency
Useless
Volatile
Warning
WhiteBoard
Write

Yoga

AN ST AT

— ACADIMC <

— SOFTWA2Z STUDE S CUBITR&]
o CRT

/
WHOA% We ﬁ NAR AT\ vE
\ T

\ﬁé(/bﬁ - \(u5 RS i

"/]c‘/ A\\\:&,f
AN e ((SOGRE
A~ MON PROFIT AT t,)\ F—

‘ > {
_ PoLITICH(/53(.7\\ CINE S
- rlivoe, vy /NICke

o
QZCT’U(: §DFT“M AX(—> “A'

ﬂ\i(@l‘f/ HigToRi @ S

};ﬁ?ﬁ”nw& [FANER=>
v USTD [ABaw Dore™y

: NNCL /&'\D Y/CLJ“"‘SS'(S
— B = ’=' ?CESO/\/A(_/ﬁ)
\"c . Do INANT
N s [EMPoR ey /'/;é/(/)’dLu;/vu

= il £ o

BiSosne TE 02

VACT
'smm nﬁquafs\;m
iy o) Sckviech) (T TRISTE D & TFSPARNT

e

\
\

"'7”\/

Stz G 7?\;:/:.\ * VOVCED Fope | CoNT@CT A ST
s = UNTRISED | roR TRonS [Nor:

:|/Adding qualifiers

WHAT:: Applying a moral, ethical, or otherwise
evaluative/adjectival/validating lens.

@ METHGOD

F E M E M E E F

[V]alues are properties of things and states of affairs that we
care about and strive to attain. .. Values expressed in

? technical systems are a function of their uses as well as
their features and designs. 4°

- | Adjectives create subcategories. They narrow the focus by naming
more specifically the imagined object at hand and by implicitly
excluding all objects that do not meet the criteria of the qualifier.
The more adjectives that are added, the easier it becomes to
answer the question “what is software?”. Or so it seems. Consider
what happens if you add the words good, bad, bourgeois, queer,
stable, expensive to software. Now make a list of adjectives and
try it for yourself. Level two of this exercise consists of observing
a software application and deducing from this the values of the
individuals, companies, and societies that produce, distribute, and
use it.

Hod

E MOTE ! A qualifier may narrow definitions to undesirable de-
grees.

40 Mary Flanagan and Helen Nissenbaum: Values at Play in Digital Games. 2014

112

% WAERMIMG i This exercise may be more effective at identi-

fying normative and ideological assumptions at play in the
making, distributing, using, and maintaining of software than
at producing a concise definition.

@XQMPLE i “When asked, Jean Heuns had difficulty answering
the question”what is software®, but he said that he could answer
the question”"what is good software". What is good software?

Notes on Multiple Software Axes = http://observatory.con
stantvzw.org/etherdump/multiple-software-axes.h
tml

wS(}URCE

113

s/ Searching “software”
= through software

@ WHAT:: A quick way to sense the ambiguity of the term
“software” is to go through the manual files on your hard drive
and observe the cases in which the term is used.

l
<>|:‘R Ho W Command-line oneliner

114

@@ lWH ;1 Software is a polysemous term that takes on different

meanings depending on where, when and by who it is
summoned. It comes with different assumptions for the different
agents involved in its production, and for those whom otherwise
use, encounter, or are subjected to it in any way or form. From
the situated point of view of the software present on your
machine, when and why does software call itself by that name.

So software exists only outside your computer? Only in general
terms? Checking for the word software in all manual pages:

grep -nr software /usr/local/man
e

EXAMFPLE

Software appears only in terms of license:
This program is free software

This software is copyright (c)

We don't run software. We still run programs.
Nevertheless software is everywhere.

See notes line 574-589 Dayl = http://observatory.const
antvzw.org/etherdump/files.md.diff.html

(& souRcE

& SEE ALSO:: Ask several people from different fields and age
Y groups the same question: "What is software?"
=» P49

115

Persist in calling
everyone a Software
Curious Person

METHOD

@ WHAT:: Naming can be a method for changing a person’s
relationship to software. For example, by (sometimes forcibly)
calling everyone a Software Curious Person it might be possible
to help people realizing their actual knowledge and practices and
encourage them to engage more in understanding what software
is, in order to reclaim their power over tools.

HaLli Insisting on curiosity as a relation, rather than for
| example fear or admiration might help cut down the barriers
between different types of expertise and allow multiple
stakeholders to feel entitled to ask questions, to engage, to
investigate and to observe.

LWHEM :: Persistently
1

@]@ URSEMCY i Software is too important to not be curious

about. Observations could benefit from recognising different
forms of knowledge. It seems important to engage with software
through multiple from multiple perspectives and positions, not
only by means of technical expertise.

@xaMPLE i+ This method was used to address each of the
visitors at the Technogalactic Walk-in Clinic.

116

HEALING AND EMBODIMENT
Feeling software

119

Giving some meaning / emotion to the time of
“nothing happening”, the moment of pause when
logging in to a service, a return to the
experience of the body. 4!

The programmer, who needs clarity, who must
talk all day to a machine that demands
declarations, hunkers down into a low-grade
annoyance. It is here that the stereotype of
the programmer, sitting in a dim room,
growling from behind Coke cans, has its
origins. The dis-order of the desk, the floor;
the yellow Post-it notes everywhere; the
whiteboards covered with scrawl: all this is
the outward manifestation of the messiness of
human thought. The messiness cannot go into
the program; it piles up around the
programmer. Soon the programmer has no choice
but to retreat into some private interior
space, closer to the machine, where things can
be accomplished. 42

The list of things machines are good at
continually expands, and assertions about the
things humans are said to be good at generally
consider only whether a human can physically
or cognitively accomplish a task, rather than

41 Techno-Galactic Software Observatory: Notes from the Observatory on When and
Where is Software. 2017

42 Ellen Ullman: Close to the Machine: Technophilia and Its Discontents. English.
Reprint edition. New York: Picador, Feb. 2012. 1sBN: 978-1-250-00248-8, pg.23

whether the task is morally and ethically
defensible or desirable. [. . .] Assuming a
timeless, natural division of labor in which
we divvy up the work for humans and the work
for machines each according to their abilities,
deflects attention from the specific conditions
under which humans labor, and the changing
systems of compensation and reward in which
they contribute value to the projects of
others. %3

Our therapeutic approach is inspired by the
unix file system paradigm in which every
component of a computer can be represented by
a file, be it your hard drive, memory or sound
card. Going together through the affordances
and limitations of such a paradigm, we hope to
provide a more intimate access to your
software. Wheter it is about specific
problematic situations with your computer, or
to address a general curiosity about
filesystems, we will take you by the hand
through an extensive intake. %4

43 Hamid Ekbia and Bonnie Nardi: Heteromation and its (dis)contents: The invisible
division of labor between humans and machines. en. In: First Monday 19.6 (May
2014). 1ssN: 13960466. Visited on Jan. 31, 2018

44 Techno-Galactic Software Observatory: Introduction to file therapy. 2017

120

Setup a Relational
Software
Observatory
Consultancy (RSOC)

METHOD

@ WHAT:: Ethnomethodological interviews.

Houli: Read the signs. Considering the ever changing nature

| of software development and use, and its vast impact on
globalized societies, it is necessary to recognize that the
problems arising from software are often either
passively-perceived or actively-observed without an articulation
of the relations. Reading the signs of the relational aspect of
software observance will give you another view on software that
will shape your ability to survive any kind of software disaster.

* Collectivise research around hacking to save time.

* Self-articulate software needs as your own Operating (system)
perspective.

» Change the lens by looking at software with a time-based
perspective.

URGEMCY

WHS i A practitioner who can facilitate the “what is our relation
to software” discussion and administer the RSOC interview as a
service.

121

@XHMPLE i+ What follows is an example of a possible
diagnostic questionnaire.

What to expect

Through administration of this questionnaire, you will obtain a
cartographic view of software users profiles. It will help you to
shape your own relation to software. You will be able to construct
your own taxonomy and classification of software users which is
necessary in order to find a means of rescue in case of a software
catastrophe.

User Habits

* What kind of user would you say that you are?
* What is your most frequently used type of software?
» How often do you install/experiment/learn new software?

History

* What is your first recollection of software use?
» How often do/when did you last purchase software or pay for
a software service?

Ethics

* What is the software feature you care about the most?
» Do you use any Free Software?
If yes than
- do you remember your first attempt at using this software
service? Do you still use it? If not why?
* Do you pay for media distribution/streaming services?

122

Do you remember your first attempt at using Free Software
and how did that make you feel?

Have you used any of these software services: Facebook, dat-
ing apps (Grindr, Tinder, etc.), Twitter, Instagram or equivalent.
Can you talk about your favorite apps or webtools that you use
regularly?

What is the most popular software your friends use?

Skill

* Would you say that you are a specilised user?

» Have you ever used the command line?

» Do you know about scripting?

» Have you ever edited an HTML page? A CSS file? A PHP file?
A configuration file?

» Can you talk about your most technical encounter with your
computer / telephone?

Economy

* How do you pay for your software use?

» Please elaborate (for example, do you buy the software? /
contribute in kind / deliver services or support)

* What is the last software that you paid for using?

» What online services are you currently paying for?

* |s someone paying for your use of service?

Personal

» What stories do you have concerning contracts and adminis-
tration in relation to your software, Internet or computer?

» How does software help you shape your relations with other
people?

123

* From which countries does your softwares come from/ reside?
How do you feel about that?

» Have you ever read a terms of use for a software service, what
about one that is not targeting the American market?

Possible/anticipated user profiles

...meAsHardwareOwnerSoftwareUSER: | did not own a com-
puter personally until very very late as | did not enjoy gaming as
a kid and had no interest in spending much time behind a PC be-
yond work (and work computer). My first experience was hence |
think in 2005 and it was a SGI workstation that was the computer
of the year 2000 (cost 10.000USD) and | got it for around 300USD.
Proprietary drivers for unified graphics+RAM were never released,
so it remained a software dead-end in gorgeous blue curved chas-
sis (m P.125).

...meAsSoftwareCONSUMER: | payed/purchased software only
twice in my life (totalling less then 25eur), as | could access most
commercial software as widely pirated in Balkans and later had
more passion for FLOSS anyway, this made me relate to software
as material to exchange and work with, rather than commodity
goods | could or could not afford.

...meAsSoftwareINVESTOR: | did it as both of those apps were
niche products in early beta (one was Jeeper Elvis, real-time-non-
linear-video-editor for BeOS) that failed to reach market, but | think
I would likely do it again and only in that mode (supporting the
bleeding edge and off-stream work), but maybe with more than
25eur.

124

N %‘3
Silicon raphics 340
Vn:ualWork

:(auon

...meAsSoftwareUserOfOS: | would spend most of 80s ignoring
computers, 90s figuring out software from high-end to low-end,
starting with OSF/DecAlpha and SunOS, than IRIX and MacOS,
finally Win 95/98 SE, that permanently pushed me into niches (of
montly Linux distro install fests, or even QNX/Solaris experiments
and finally BeOS use).

...meAsSoftwareWEBSURFER: | got used to websurfing in more
than 15 windows on Unix systems and never got used to less than
that ever since, furthermore with addition of more browser options
this number only multiplied (always wondered if my first system
was Windows 3.11 - would | be a more focused person and how
would that form my relations to browser windows>tabs).

...meAsSoftwareUserOfProprietarySoftware: | signed one NDA
contract in person on the paper and with ink on a rainy day while
stopping of at train station in northern Germany for the software
that was later to be pulled out of market due to problematic licens-
ing agreement (intuitively | knew it was wrong) - it had too much
unprofessional pixeleted edges in its graphics.

...meAsSoftwareUserOfDatingWebsites: | got one feature re-
guest implemented by a prominent dating website (to search pro-
files by language they speak), however | was never publicly ac-
knowledged (though | tried to make use of it few times), that made
our relations feel a bit exploitative and underappreciated.

...meAsSoftwareUserTryingToGoPRO: My only two attempts to
get into a software company failed as they insisted on full time
commitments. Later | found out one was intimidated in the inter-
view and the other gave it to a person that negotiated to work part
time with a friend! My relation to professionalism is likely equally
complex and perverted as my one to the software.

126

This method was developed by The RSOC Group.

(& soURCE

127

129

Case study : W. W.

...ww.AsExperiencedAdventurousUSER: Experiments with soft-
ware every two days as she uses FLOSS and GNU/Linux, cares
the most for malleability of the software - as a result she has big
expectations of flexibility even in software category which is quite
conventional and stability focused like file-hosting.

...ww.AsAnlInvestorinSoftware: Paid for a compiled version of
FLOSS audio software 5 years ago as she is supportive of econ-
omy and work around production, maintenance and support, but
she also used closed hardware/software where she had to agree
on licences she finds unfair, but then she was hacking it in order
to use it as an expert - when she had time.

...ww.AsCommunicationSoftwareUSER: She is not using com-
mercial social networks, so she is very conscious of information
transfers and time relations, but has no strong media/format/de-
sign focus.

Q: What is your first recollection of software use?
A: MS-DOS in 1990 at school — | was 15 or 16. Oh no 12. Basic
in 1986.

Q: What are the emotions related to this use?
A: Fun. I'm good at this. Empowering.

Q: How often do/when did you last purchase software or pay for
a software service?

A: | paid for ardour five years ago. | paid the developper directly.
For the compiled version. | paid for the service. | pay for my web-
site and email service at Domaine Public.

Q: What kind of user would you say you are?
A: An experienced user drawing outside the lines. | don’t behave.

Q: Is there a link between this and your issue?
A: Even if it's been F/LOSS there is a lot of decision power in my
package.

Q: What is your most frequently used type of software?
A: Web browser. Email. Firefox & Thunderbird.

Q: How often do you install/experiment/learn new software?
A: Every two days. | reinstall all the time. My old Its system died.
Stop being supported last april. It was Linux Mint something.

Q: Do you know about scripting?
A: | do automating scripts for any operation | have to doi several
times like format conversion.

Q: Can you talk about your most technical encounter with your
computer/telephone?
A: I've tried to root it. But i didn’t succeed.

Q: How much time do you wish to spend on such activities like
hacking, rooting your device?
A: Hours. You should take your time.

Q: Did you ever sign license agreement you were not agree with?
How does that affect you?

A: This is the first thing your when you have a phone. It's obey or
die.

Q: What is the software feature you care for the most?

A: Malleability. Different ways to approach a problem, a challenge,

an issue.

Q: Do you use any free software?
A: Yes. There maybe are some proprietary drivers.

130

131

Q: Do you remember your first attempt at using free software and
how did that make you feel?

A: Yes | installed my dual boot in... 10 years ago. Scared and
powerful.

Q: Facebook, dating apps (Grindr or the sort), Twitter, Instagram
or equivalent?
A: Google, Gmail. That's it.

Q: Can you talk about your favorite apps or webtools that you use
regularly?

A: Music player. Vanilla music and f-droid. browser. | pay attention
to clearing my history, no cookies. | also have iceweasel. Https
by default. Even though | have nothing to hide.

Q: What stories around contracts and administration in relation to
your software internet or computer?

A: Nothing comes to my mind. I'm not allowed to do, to install
on a phone. When it's an old phone, there is nothing left that is
working you have to do it.

Q: How does software help you shape your relations with other
people?

A: It's a hard question. If it's communication software of course it's
its nature to be related to other people. There is an expectency
of immediate reply, of information transfer... It's troubling your
relation with people in certain situations.

Q: From which countries does your softwares live/is coming from?
How do you feel about that?

A: | think | chose the Netherlands as a mirror. You are hoping to
reflect well in this mirror.

Q: Have you ever read a terms of software service; one that is
not targeting the American market?
A: | have read them. No.

- o 208 "’"W%:;é 3l maintzining 2
e M“W@imemm” s
ﬁ-ms‘"umﬁl. =
o ot Poget. T best ancitectures,
e wsaa gt Wogn Pose). A regular intervais, you
= necgme more efective, then tune and adjust

or wit 3 salte to honar your agile yoga practices.
chve sCrum meeting. mow i imvite you to open your
py a0 2 07 Som the et o the hesd and back.

#7% 5 95 3 scrum together if youtre ok being
4 e 'Mmmmvtmmm.ﬁnt
imSDMmm.meremmm
e 2 we e and extale. syncing our

,lheyarea :
00 = g reer, e P U
\ ™ other in 3

134

Agile Sun Salutation

METHOD

F E | E | E E

Agile software development describes a set of values and
principles for software development under which

? requirements and solutions evolve through the collaborative
effort of self-organizing cross-functional teams. It advocates
adaptive planning, evolutionary development, early delivery,
and continuous improvement, and it encourages rapid and
flexible response to change. These principles support the
definition and continuing evolution of many software
development methods. 4°

@ WHAT:: You will be observing yourself

=

45 wikipedia contributors: Agile software development — Wikipedia, The Free
Encyclopedia. 2018

135

Scrum is a framework for managing software development.
It is designed for teams of three to nine developers who
break their work into actions that can be completed within
fixed duration cycles (called “sprints”), track progress and
re-plan in daily 15-minute stand-up meetings, and
collaborate to deliver workable software every sprint.
Approaches to coordinating the work of multiple scrum
teams in larger organizations include Large-Scale Scrum,
Scaled Agile Framework (SAFe) and Scrum of Scrums,
among others. 46

Hi bl

WHEM i1 Anywhere where it's possible to lie on the floor

Self-organization and motivation are important, as are
interactions like co-location and pair programming. It is
better to have a good team of developers who communicate
and collaborate well, rather than a team of experts each
operating in isolation. Communication is a fundamental
concept. 47

46 Wikipedia contributors: Scrum (software development) — Wikipedia, The Free
Encyclopedia. 2018
47 Wikipedia contributors: The Manifesto for Agile Software Development. 2018

136

Because of the broad aims of this chapter, we have relied on a combination of methodologies. This
includes over 20 in-person and telephone interviews with relevant industry experts, including software
developers, devops, product managers and developers, data engineers, a/b testers, Al experts, and
privacy officers. During these conversations, we inquired how the production of software and services is
organized, as well as how relevant transformations have come to affect the conditions for privacy
governance. In addition to the interviews, we have relied on industry white papers, legal, policy and
technical documents, as well as relevant scientific literature, in particular from the fields of computer
science and engineering, industrial management, software studies, regulation and law. We build on Yoo
and Blanchette’s volume on the regulation of the cloud and the infrastructural moment of computing
(Yoo and Blanchette 2015) as well as Kaldrack and Leeker’s edited volume on the dissolution of software
into services (Kaldrack and Leeker 2015).

In the coming sections, we first describe the three shifts that constitute what we call the agile turn. For
each of the shifts, we touch on their historical roots and sketch some of its current motions. Next, we
introduce the three perspectives through which we explore the implications of the agile turn to privacy
governance, namely modularity, temporality and capture. These perspectives also allow us to question
some of the underlying assumptions of privacy research and policy when it comes to the production of
software and digital functionality more generally.

2. The Agile Turn

Over the last decade and a half, the production of (non-critical) software has been fundamentally
transformed as the result of three parallel developments. First, increasingly software producers have
moved from the use of ight and planned models for systems such as
the so-called waterfall model, to lightweight and lean methods®. These latter models are categorized

under the umbrella term ‘agile’ software development and involve an emphasis on user-centricity, short
development cycles, continuous testing and greater simplicity of design (Douglass 2015)

Second, pervasive connectivity and advances in flexible client-server models have made possible a shift
from “shrink wrapped software” products to software as services as the model for architecting and
offering digital functionality. In this so-called service-oriented architecture (SOA) model, software no
longer runs only on the client side, but is redesigned to run on a thin client that connects to a server
which carries out most of the necessary computation. In addition, the core functional components of a

* A 2015 survey conducted by HP as part of their report titled “State of Performance Engineering” with 601 IT
developers in 400 US companies indicated that two thirds of these companies are either using “purely agile
methods” or “leaning towards agile”. “Is agile the new norm?” I

5

137

Seda Glirses and Joris van Hoboken: Privacy after the Agile Turn. 2017

realized that its internal solutions for the production and management of virtual machines could be the
basis of an external offering as well (Black 2009). To phrase it differently, Amazon’s cloud offerings
emerged from internally oriented engineering innovations related to the efficient production of their
services in a new production paradigm. Amazon’s cloud services are leading in the industry (Knorr 2016).

More recently, a similar move can be observed in the proliferation of the container model for the

and of service ina cloud (Metz 2014). This container
model involves a further advancement in the use of the cloud for production of digital functionality. It
involves an abstraction away from the virtual machine and a focus on making the service component the
dominant building block, both for development as well as for operations. In the words of the Cloud
Native Computing Foundation (CNCF), that is spearheading the container model: “Cloud native

are ¢ packaged, scheduled and microservices-oriented" (Fay 2015).
The foundation includes the likes of Cisco, Google, Huawei, IBM, Red Hat, Intel, Docker and the Linux
Foundation. Google's contribution involves the donation of open sourced container manager
‘Kubernetes’,"" an open sourced solution derived from its internal solution called Borg (Metz 2015).
The agile turn has accelerated software production while transforming business operations. Clearly, this
has great implications for different aspects of privacy governance. Many of the elements of the agile
turn have been addressed by privacy researchers and policymakers in some way, but an integrated
perspective on the implications of the agile turn for privacy governance has so far been missing. In the
next sections, we develop three perspectives that allow us to look at the privacy implications of the agile
turn and to start reflecting upon the ability of existing privacy governance frameworks to address some
of the related challenges.

3. Modularity

The agile turn comes with an increase in modularity in the software as a service environment. The term
modularity is used to describe the degree to which a given (complex) system can be broken apart into
subunits (modules), which can be coupled in various ways (Baldwin 2015). As a design or architectural
principle modularity refers to the “building of a complex product or process from smaller subsystems
that can be designed independently yet function together as a whole” (Baldwin and Clark 1997). The
concept of modularity and its application have been the subject of research in different engineering
disciplines and industrial management (Drbecker and Bshmann 2013). It is generally used to manage
complexity of systems and to allow for independent implementation and reuse of system components
(Clark et al. 2005) and is an important design and policy principle for the Internet (Van Schewick 2010;
Yoo 2016). Modular design involves the mantra that the independence of system components is

** Kubernetes is derived from kuBepvritng and is Greek for "helmsman" or "pilot"

10

138

9@ URGEMCY ! Use Agile Software Development Methods to
develop a new path into your professional and personal life
towards creativity, focus and health.

% The agile movement is in some ways a bit like a teenager:
very self-conscious, checking constantly its appearance in a

mirror, accepting few criticisms, only interested in being with
its peers, rejecting en bloc all wisdom from the past, just
because it is from the past, adopting fads and new jargon, at
times cocky and arrogant. But | have no doubts that it will
mature further, become more open to the outside world,
more reflective, and also therefore more effective. 48

Agile Sun Salutation was developed by Anne Laforet and performed
by Allegra. See following pages for the full script.

(& souRcE

48 Philippe Kruchten: Agile’s Teenage Crisis? 2011

141

Agile Sun Salutation

Hello and welcome to the presentation of the agile yoga method-
ology. | am Allegra, and today I'm going to be your personal guide
to YOGA, an acronym for “whY Organize? Go Agile!”. I'll be part
of your team today and we’ll do a few exercises together as an
introduction to a new path into your professional and personal life
towards creativity, focus and health.

A few months ago, | was stressed, overwhelmed with my work,
feeling alone, inadequate, but since | started practicing agile yoga,
| feel more productive. | have many clients as an agile yoga coach,
and I've seen new creative business opportunities coming to me
as a software developer.

For this first experience with the agile yoga method and before
we do physical exercises together, | would like to invite you to
close your eyes. Make yourself comfortable, lying on the floor,
or sitting with your back on the wall. Close your eyes, relax. Get
comfortable. Feel the weight of your body on the floor or on the
wall. Relax.

Leave your troubles at the door. Right now, you are not procras-
tinating, you are having a meeting at the <SAY THE NAME OF
YOUR LOCATION HERE>, a professional building dedicated to
business, you are meeting yourself, you are your own business
partner, you are one. You are building your future.

You are in a room standing with your team, a group of lean pro-
grammers. You are watching a white board together. You are
starting your day, a very productive day as you are preparing to
run a sprint together. Now you turn towards each other, making
a scrum with your team, you breathe together, slowly, inhaling
and exhaling together, slowly, feeling the air in and out of your
body. Now you all turn towards the sun to prepare to do your

ASSanas, the Agile Sun Salutations or ASS with the team dedi-
cated ASS Master. She’s guiding you. You start with Namaskar,
the Salute. your palms joined together, in prayer pose. You all
reflect on the first principle of the agile manifesto. Your highest
priority is to satisfy the customer through early and continuous
delivery of valuable software.

Next pose, is Ardha Chandrasana or (Half Moon Pose). With a
deep inhalation, you raise both arms above your head and tilt
slightly backward arching your back. You welcome changing re-
quirements, even late in development. Agile processes harness
change for the customer’s competitive advantage. Then you all do
Padangusthasana (Hand to Foot Pose). With a deep exhalation,
you bend forward and touch the mat, both palms in line with your
feet, forehead touching your knees. You deliver working software
frequently.

Surya Darshan (Sun Sight Pose). With a deep inhalation, you
take your right leg away from your body, in a big backward step.
Both your hands are firmly planted on your mat, your left foot
between your hands. You work daily throughout the project, busi-
ness people and developers together. Now, you're flowing into
Purvottanasana (Inclined Plane) with a deep inhalation by taking
your right leg away from your body, in a big backward step. Both
your hands are firmly planted on your mat, your left foot between
your hands. You build projects around motivated individuals. You
give them the environment and support they need, and you trust
them to get the job done.

You're in Adho Mukha Svanasana (Downward Facing Dog Pose).
With a deep exhalation, you shove your hips and butt up towards
the ceiling, forming an upward arch. Your arms are straight and
aligned with your head. The most efficient and effective method
of conveying information to and within a development team is
face-to-face conversation.

142

143

Then, Sashtang Dandawat (Forehead, Chest, Knee to Floor Pose).
With a deep exhalation, you lower your body down till your fore-
head, chest, knees, hands and feet are touching the mat, your butt
tilted up. Working software is the primary measure of progress.

Next is Bhujangasana (Cobra Pose). With a deep inhalation, you
slowly snake forward till your head is up, your back arched con-
cave, as much as possible. Agile processes promote sustainable
development. You are all maintaining a constant pace indefinitely,
sponsors, developers, and users together.

Now back into Adho Mukha Svanasana (Downward Facing Dog
Pose). Continuous attention to technical excellence and good
design enhances agility.

And then again to Surya Darshan (Sun Sight Pose). Simplicity—
the art of maximizing the amount of work not done—is essential.
Then to Padangusthasana (Hand to Foot Pose). The best archi-
tectures, requirements, and designs emerge from self-organizing
teams.

You all do Ardha Chandrasana (Half Moon Pose) once again. At
regular intervals, you as the team reflect on how to become more
effective, then tune and adjust your behavior accordingly. You
end our ASSanas session with a salute to honor your agile yoga
practices. You have just had a productive scrum meeting. Now i
invite you to open your eyes, move your body around a bit, from
the feet up to the head and back again.

Stand up on your feet and let's do a scrum together if you're okay
being touched on the arms by someone else. If not, you can do
it on your own. So put your hands on the shoulder of the SCP
around you. Now we're joined together, let's look at the screen
together as we inhale and exhale, syncing our bodies together to
the rythms of our own internal software, modulating our oxygen
level intake requirements to the oxygen availability of our service
facilities.

Now, let’s do together a couple of exercises to protect and strengthen
our wrists. As programmers, as internauts, as entrepreneurs, our
wrists are a very crucial parts of the body to protect. In order to be
able to type, to swipe, to shake hands vigourously, we need them

in good health. So bring to hands towards each other in a prayer
pose, around a book, a brick. You can do it without an object but
I’'m using my extreme programming book - embrace change - for
that. So press the palms together firmly, press the pad of your
fingers together. Do that while breathing in and out twice.

Now let's extend our arms out in the air, palms and fingers facing
down, like we're typing. Make your shoulders round. Let's breath
while visualizing in our heads the first agile mantra: Individuals
and interactions over processes and tools.

Now let’s bring back the arms next to the body and raise them
again. And let's move our hands towards the ceiling this time,
strenghtening our back. In our head, the second mantra: Working
software over comprehensive documentation.

Now let’s bring the hands back out again in the standing position.
Once again the first movement while visualizing the third mantra:
Customer collaboration over contract negotiation.

And then the second movement once more while thinking about
the fourth and last mantra: Responding to change over following
a plan and of course we continue breathing.

Now to finish this session, let’s do a sprint together in the corridor!

144

Hand reading

METHOD

@ WHAT:: Have your fortunes read and derive insights into life
from the wisdom of software.

How:: Put your hand in the nearest Future Blobservation
| Booth, and get your command lines read.

@I@ WHY i The hand which holds your mouse everyday hides
many secrets.

sample reading timeline:

* 15:00 a test user, all tests clear and systems are online a
user who said goodbye to us another user a user who thought
it’d be silly to say thank you to the machine but thank you
very much another kind user who said thank you yet another
kind user another user, no feeback a nice user who found
the reading process relieving yet another kind user a scared
user! took the hand out but ended up trusting the system. “so
cool thanks guys” another user a young user! this is a funny
computer

» 15:35 another nice user

» 15:40 another nice user

» 15:47 happy user (laughing)

EXAMFPLE

146

15:51 user complaining about her fortune, saying it's not true.
Found the reading process creepy but eased up quickly
15:59 another nice user: http://etherbox.local: 9001
/p/SCP.sedyst.md

16:06 a polite user

16:08 a friendly playful user (stephanie)

16:12 a very giggly user (wendy)

16:14 a playful user - found the reading process erotic
DEFRAGMENTING? NO! Thanks Blobservation http://et
herbox.local:9001/p/SCP.loup.md

16:19 a curious user

16:27 a friendly user but oh no, we had a glitch and computer
crashed. But we still delivered the fortune. We got a thank you
anyway

16:40 a nice user, the printer jammed but it was sorted out
quickly

16:42 another nice user

16:50 nice user (joak)

16:52 yet another nice user (jogi)

16:55 happy user! (peter w)

16:57 more happy user (pierre h)

16:58 another happy user

17:00 super happy user (peggy)

17:02 more happy user

EXAMFPLE

Software time is not the same as human time. Computers
will run for AS LONG AS THEY WILL BE ABLE TO,
provided sufficient power is available. You, as a human,
don't have the luxury of being always connected to the
power grid and thus have to rely on your INTERNAL
BATTERY. Be aware of your power cycles and set yourself
to POWER-SAVING MODE whenever possible.

148

Bug reporting for
sharing observations

METHOD

@ WHAT:: Sharing the experience of trying to solve a
hard-boiled software noir.

WHEM :: Itis difficult to take notes while working on critical
infrastructure, but the sooner notes are compiled, the more vivid
the report.

WHS 1 Bug reports are often presented in a dry format intended
for insiders only. But they do not have to be dry. On the contrary,
they can have a rather convivial format.

9@ UEGEMCY . Embracing moments of breakdown as
opportunities to demystify the workings of software and the
practice of software debugging.

150

EXAMFPLE

(& soURCE

151

On monday morning, with the Walk-In Clinic about to open, Etherpad

had stopped working but it was unclear why. Where did the ether-
pad live? What could be done to bring it back to normal operation?
A detailed bug report was filed, starting by looking around the pi’'s
filesystem by reading /var/log/syslog in /opt/etherpad
and in a subdirectory named vaxr/ there was dirty.db, and
dirty it was.

After some getting used to the various commands to
navigate in hexedit the unwanted zeroes were gone in an
instant.

Martino asked about the trailing ‘.’ character and | checked
a different copy of the file. No ‘.’ there, so that had to go too.
My biggest mistake in a long time! The ‘.’ we were seeing in
Martino’s copy of the file was in fact a ‘\n’ (Oa)!

We still don’t know why exactly etherpad stopped working
sometime Sunday evening or how the zeroes got into the file
dirty.db

The example was extracted from an e-mail sent by J. Hofmdller to
the Technogalactic Software Observatory mailinglist. The full text is
on the following pages.

153

from jogi@mur.at to [Observatory]
When dirty.db get's dirty

Dear all,
as promised yesterday, here my little report regarding the broken
etherpad.

When dirty.db get’s dirty

When | got to WTC on Monday morning the etherpad on ether-
box.local was disfunct. Later someone said that in fact etherpad
had stopped working the evening before, but it was unclear why.
So | started looking around the pi’s filesystem to find out what was
wrong. Took me a while to find the relevant lines in /var/log
/syslog but it became clear that there was a problem with the
database. Which database? Where does etherpad ‘live’? | found
itin /opt/etherpad and in a subdirectory named vazr/ there it
was: dirty.db, and dirty it was.

A first look at the file revealed no apparent problem. The last lines
looked like this:

{"key":"sessionstorage:DdyOgw7okwbkv5BzkR1DuSLCV_IA5_jQ","val":{"cookie
“:{"path":"/","_expires":null, "originalMaxAge":null, "httpOnly":true,
"secure":falsettt

{"key":"sessionstorage:AUlcffgcTEf_q6BV9aIdAVES2YyXM7Gm1l", "val":{"cookie
":{"path":"/","_expires":null,"originalMaxAge":null, "httpOnly":true,
"secure":falset}?

{"key":"sessionstorage: _H5SdU1DvQ3XCuPaZEXQ51x0K6aAEJI9m", "val": {"cookie
":{"path":"/","_expires":null, "originalMaxAge":null, "httpOnly":true,

"secure":falset??

What | did not see at the time was that there were some (AFAIR
something around 150) binary zeroes at the end of the file. | used
tail for the first look and that tool silently ignored the zeroes at the
end of the file. It was Martino who suggested using different tools
(xxd in that case) and that showed the cause of the problem. The
file looked something like this:
00013730: 6f6b 6965 223a 7h22 7061 7468 223a 222f okie":{"path":"/
00013740: 222c 225f 6578 7069 7265 7322 3abe 756¢c ","_expires":nul
00013750: 6c2c 226 7269 6769 6e61 6cdd 6178 4167 1,"originalMaxAg
00013760: 6522 3abe 756¢ 6c2c 2268 7474 704f 6e6c e":null,"httpOnl
00013770: 7922 3a74 7275 652c 2273 6563 7572 6522 y":true,"secure"

00013780: 3a66 61l6c 7365 7d7d 7d0a 0000 0000 0000 :falseiii.......
00013790: 0000 0000 0000 OOOO 0000 OO0 00O OO0

So Anita, Martino and | stuck our heads together to come up with
a solution. Our first attempt to fix the problem went something like
this:

dd if=dirty.db of=dirty.db.clean bs=1 count=793080162

which means: write the first 793080162 blocks of size 1 byte to a
new file. After half an hour or so | checked on the size of the new
file and saw that some 10% of the copying had been done. No
way this would get done in time for the walk-in-clinic. Back to the
drawing board.

Using a text editor was no real option btw since even vim has
a hard time with binary zeroes and the file was really big. But
there was hexedit! Martino installed it and copied dirty.db onto his
computer. After some getting used to the various commands to
navigate in hexedit the unwanted zeroes were gone in an instant.
The end of the file looked like this now:
00013730: 6f6b 6965 223a 7b22 7061 7468 223a 222f okie":{"path":"/
00013740: 222c 225f 6578 7069 7265 7322 3abe 756c ","_expires":nul
00013750: 6c2c 226f 7269 6769 6e61 6¢4d 6178 4167 1,"originalMaxAg
00013760: 6522 3abe 756c 6¢c2c 2268 7474 704f 6e6c e":null,"httpOnl

00013770: 7922 3a74 7275 652c 2273 6563 7572 6522 y":true,'"secure"
00013780: 3a66 616¢c 7365 7d7d 7d0a :falsettt.

154

155

Martino asked about the trailing ‘.’ character and | checked a
different copy of the file. No ‘.’ there, so that had to go too. My
biggest mistake in along time! The ‘. we were seeing in Martino’s
copy of the file was in fact a ‘\n’ (0a)! We did not realize that,
copied the file back to etherbox.local and waited for etherpad to
resume it's work. But no luck there, for obvious reasons.

We ended up making backups of dirty.db in various stages of
deformation and Martino started a brandnew pad so we could
use pads for the walk- in-clinic. The processing tool chain has
been disabled btw. We did not want to mess up any of the already
generated .pdf, .html and .md files.

We still don’t know why exactly etherpad stopped working some-
time Sunday evening or how the zeroes got into the file dirty.db.
Anita thought that she caused the error when she adjusted time
on etherbox.local, but the logfile does not reflect that. The last
clean entry in /var/log/syslog regarding nodejs/etherpad is
recorded with a timestamp of something along the line of ‘Jun 10
10:17'. Some minutes later, around ‘Jun 10 10:27’ the first error
appears. These timestamps reflect the etherbox’s understanding
of time btw, not ‘real time’.

It might be that the file just got too big for etherpad to handle it.
The size of the repaired dirty.db file was already 757MB. That
could btw explain why etherpad was working somewhat slugishly
after some days. There is still a chance that the time adjustment
had an unwanted side effect, but so far there is no obvious reason
for what had happened.

— J.Hofmuiller
http://thesix.mur.at/

Interface
Détournement

METHOD

% WAREMIMG ! We are under the black magic of capitalist
digital interface making! Critical radars will detect some con-
ceptual gibberish over here!

@ WHAT:: Satirical détournement of your favorite bullshit website
interface, through parody and poetry. Heal your eyes and brain
by scratching and diffracting the surface of everyday browsing.

9 URGEMCY ! If you have the feeling that some words are
imposed to you and want to reclaim a power of saying/naming.

) WHEM:: When you reach your limit and can no longer tolerate
the jargon of the digital economy and the rhetorics of Silicon
Valley.

156

F E M E (| E E F

Be careful in planning your interface hoax. You might get
caught and accused of fake news design and circulation.

The Interface Détournement-method was developed by Loup Cellard.

(& soURCE

Example of an interface template study by Henrik Jan Grievink
(= P.158)

ExAMFPLE

157

TIC

158

Hiabd

159

1.

Choose a particular website where you want to intervene. You
can pick an interface in relation to:

contestable content: bullshit slogans and jargon, problematic
rhetoric, unnecessary content that is interesting to reframe,
etc.

problematic interface issues: unreadabillity, problems of orien-
tation/disorientation, interaction design issues, etc.

. Open the “developer tool” of your browser. With this tool you

will be able to visualize and modify locally the content of your
website (the html rendering) and the way it is styled (the css
file).

. Then you have to adopt a strategy of intervention guiding your

détournement. Here is a list of proposed strategies:

The classical détournement: play with the interface content,
replace textual elements, add others with a good dose of hu-
mour and irony.

The layout and template observation: study the interface lay-
out by removing all the textual content. The layout will appear,
after having done this exercise on several interfaces you will
be able to compare the regularities between websites. Then
feel free to move elements and reconstruct the interface the
way you want.

. After having done your détournement, you can share the out-

come of your work as a hoax: present the new interface you
have done just as if it was a mundane and “real” one. Observe
the reactions of the tested credulous and refine your détourne-
ment with their insights. You can also take a screenshot of your
work and send it to an audience.

& Lectur: X B Table- x (B Haraw. X (B Harav X | [reader X ([saturd X { [vocab. X | e¢

& (& @& Dropbox, Inc [US] | https://www.dropbox.com

Try Upside Down Business &

Reinventing
Earthquake
computing
Introducing Upside Down Interfaces and

Dumb Synchronisation — a slow way to work

together.

Example of an interface detournement of the dropbox website

160

X { @@ TEMPL X @ Truth! X { @ Chron X / 33 Dropt x'-\:’:jcssax X

Off-load from
cloud

Never log off

161

Comportments of
. software (softwear)

THOD

F E M E M E E F

The analysis of common sense, as opposed to the exercise
of it, must then begin by redrawing this erased distinction

? between the mere matter-of-fact apprehension of reality—or
whatever it is you want to call what we apprehend merely
and matter-of-factly—and down-to-earth, colloquial wisdom,
judgements, and assessments of it. 4°

WHAT!:: Observe and catalog the common gestures, common
comportments and common sense(s) surrounding software.

MO TE i The common senses and comportments of software are
informed and conditioned by those of hardware and so perhaps
this is more accurately a method for articulating comportments of
computing.

49 Clifford Geertz: Common Sense as a Cultural System. In: The Antioch Review 33.1
(1975), pp. 5-26. 1ssN: 00035769

162

WAEMI MG i Software wears on both individual and collec-

tive bodies and selves. Software may harm your physical
and emotional health and that of your society both by design
and by accident.

Gl

-: | This can be done through observation of yourself or others. Sep-
arate the apprehended and matter of fact from the meanings, ac-

T | tions, reactions, judgements, and assessments that the apprehen-
sion occasions.

1.

‘tD'.

Begin by assembling a list of questions such as: When you
see a software application icon what are you most likely to
do? When a software application you are using presents you
with a user agreement what are you most likely to do? When a
software applciation does something that frustrates you what
are you most likely to do? When a software application you are
using crashes what are you most likely to do?

. Write down your responses and the responses of any subjects

you are observing.

. For each question, think up three other possible responses.

Write these down.

. (This step is only for the very curious) Try these other possible

responses out the next time you encounter each of the given
scenarios.

SEE ALSO::

Y Agile Sun Salutation

=» P.135

163

FLOWS

Flow-regulation, logistics
and seamlessness

165

Contentious meetings. Users trying to
articulate needs that don’t fit neatly into all
the flowcharts and drawings. Compromises.
Promises of “future development” to take
unaddressed needs into account. “Then it moves
to programming,” said the vice president. %0

To get to the demo in five days, the people
coming together had to be sufficiently similar,
sufficiently flexible, and sufficiently few. The
participants all spoke English fluently, had
obtained at least college undergraduate degrees,
and had trained as engineers — with the
exception of the anthropologist, Prem. 5!

The “Agile Manifesto” and related commentaries
read as a peculiar combination of working
methods with moral values, yielding a work
ethic tuned towards efficiency, productivity,
and customer satisfaction. While emphasizing
categories such as “individuality,” “freedom,”
and “respect,” many of the recommended
principles and methods are in fact reminiscent
of the theory of “egoless programming”

(...).%

50 Ejlen Ullman: Close to the Machine: Technophilia and Its Discontents. English.
Reprint edition. New York: Picador, Feb. 2012. 1sBN: 978-1-250-00248-8, pg.48

51 Lilly Irani: Hackathons and the Making of Entrepreneurial Citizenship. en. In:
Science, Technology, & Human Values 40.5 (Sept. 2015), pp. 799-824. ISSN:
0162-2439, 1552-8251. p01: 10.1177/0162243915578486. Visited on Jan. 31,
2018, pg.13

52 Christoph Neubert: The Tail on the Hardware Dog. English. In: There is no
Software, there are just Services. Ed. by Irina Kaldrack and Martina Leeker.
Luneburg, 2015, pp. 21 -37. ISBN: 978-3-95796-055-9, pg.33

2|Adrift in the doped lattices of a silicon
crystal, a hole is a positive particle before
it is the absence of a negatively charged
electron, and the movement of electrons toward
the positive terminal is also a flow of holes
streaming the other way. >3

53 sadie Plant: Zeroes and Ones: Digital Women and the New Technoculture. English.
1st edition. New York: Doubleday, Sept. 1997. 1sBN: 978-0-385-48260-8, pg.57

166

METHOD

@

Continuous
Integration

WHAT:: A sophisticated form of responsibility management: it
is the fascia of software services. Continous Integration picks up
after all other services and identifies what needs to happen so
that they can work in concert. It is a way of observing the
evolution of (micro)services through cybernetic
(micro)management.

Houli: Keeping track of changes to all services and allowing

| everyone to observe if they still can work together after all the

moving parts are fitted together.

g WHEM :: In a world of distributed systems where there are

many parts being organized simultaneously, continuous
integration is a form of observation that helps (micro)services
maintain a false sense of independence and decentralization
while constantly subjecting them to centralized feedback.

ﬁuHo i+ All services and their operators will submit themselves to

the feedback loops of continuous integration. This can be a
democratic process or not.

9@ UEGEMCY 1 Continuous Integration is the reconfiguration of
the divisions of labor in the shadows of automation. How can we

167

surface and question its doings and undoings?

WARMIMG i When each service does one thing well, the
service makers tend to assume everybody else is doing the
things that they do not want to do.

At the Walk-in Clinic, Continuous Integration was introduced as a
service to respond to the integration hell that was produced when
Software Curious Persons attempted to engage in more than one
of the TGSO services on offer. Due to demand, the Continuous
Integration service was extended to do “service discovery” and
“load balancing” once the walk-in clinic was in operation.

Continuous Integration worked by visiting the different services of
the walk-in clinic to check for updates, test the functionality, and
think through implications of integration with other services. If the
pieces didn't fit, the service delivered error messages and solution
options.

When we noticed that Software Curious Persons visiting the walk-
in clinic were having troubles finding the different services, and
that some services were overloaded with Software Curious Persons,
Continuous Integration was extended. We automated service reg-
istration using colored tape and provided a lookup registry for
Software Curious Persons.

Load balancing meant that Software Curious Persons were for-
warded to services that had capacity. If all other services were
full, the load balancer defaulted to sending the Software Curious
Person to the Agile Sun Salutation 5* service.

54 http://pad.constantvzw.org/p/observatory.guide.agile.yoga

168

WARMIMG:: At TGSO, the bundling of different functional-

ities into the Continuous Integration service broke the “do
one thing well” principle, but saved the day. (We register this
as technical debt for the next iteration of the Walk-In Clinic.)

¥ soURCE

b,
IN

While Continous Integration held the day together, we are sorry to
report that the work is only documented in images and in the chore-
ography of the day but not in any of our writings.

F E M E M E E F

Continous Integration may be the string that holds your cur-
rent software galaxy together. When operated successfully,
it is easily overlooked like the air we breathe.

More technically, | am interested in how things bounce

around in computer systems. | am not sure if these two

things are related, but | hope continuous integration will help
55

me.

55 software Curious Person expressing her hopes for Continuous Integration

170

make make do

METHOD

@ WHAT:: Makefile as a method for a promiscuous publication.

It possessed many heads, the exact number of which varies
according to the source. %6

56 Wikipedia contributors: Lernaean Hydra — Wikipedia, The Free Encyclopedia.
2018

171

F

MOTE:: May the traditional software workflow of a Makefile 37
serve as a platform for a hyper flexible constellation of multi-style
mini-programs spread out over files and folders, media and meta-
data?

A promiscuous publication is NOT like parallel, hybrid, or cross-
media publishing. It is a multi-headed and polycentric form of
making public. It enjoys its various forms, and embraces their id-
iosyncracies. As a multi-headed publication it is NOT obsessed
with providing uniform outcomes across diverse media. Having
many centers, it can produce new focal points and obfuscate its
origins. It explores playfully a spectral diversity with sibling out-
comes and bastard children that operate out of sync or tune.

We are curious about creating pipelines that stir and create cur-
rents and behaviours spiraling outside of the continuity of pre-
dictable flows, where their modality switches as their inputs so-
lidify, evaporate and gelatinize into diverse forms in reactions to
conditions, while influencing and changing the others.

How can the making-public itself be an engaging experience, inter-
active but with erratic options? How could the process of iterating
between known sources and diverse and unfamilair pipelines be
made tangible?

find all .md files in the directory
md=$(shell 1ls etherdump/x.md)

map *.mp => %.html for mdsrc
md2html=$(md:%.md=%.html)
md2pd£=$(md:9%.md=%. pdf)

inputs

.mdsrcs: A listing of (local) markdown files

57 http://www.gnu.org/software/make/manual/make.html

172

mdsrcs=$(shell 1s etherdump/*.mdsrcs)
2col=$(mdsrcs:%.mdsrcs=%.2col.pdf)
pdocpdf=$ (mdsrcs:%.mdsrcs=%.pdoc.pdf)
pdochtml=$(mdsrcs:%.mdsrcs=%.html)
.pdfsrc: A listing of local PDF URLS,
optionally with #page= fragment
pdfsrcs=$(shell 1ls etherdump/*.pdfsrcs)
scrp=$(pdfsrcs:%.pdfsrcs=%.scrp.pdf)
all: $(md2html) $(md2pdf) $(pdochtml) $(pdocpdf) $(2col) $(scrp)
dump:
cd etherdump && etherdump pull --all \
--pub /home/pi/etherdump \
--css lib/styles.css \
--script lib/versions.js --no-raw-ext
cd etherdump && etherdump index x.meta.json \
--templatepath /home/pi/etherdump/lib \
--template index.template.html > _index.html
.PHONY: fixnames
fixnames:
rename "s/ /_/g" *
rename "s/[\(\)\?\']//g" *
rename "s/A(\d) ([A\d])/0\1\2/g" *
today:
touch ‘date +"%Y-%m-%d.md""
now_folder:
mkdir ‘date +"9%Y-%m-%d-9%H%MBS""
.html <== .md using pandoc
%.html: %.md
pandoc --from markdown \
--to html \
--standalone \
$<\
-o $@
.pdf <== .md using pandoc/latex

%.pdf: %.md
pandoc --from markdown \

--table-of-contents \

--standalone \

$<\

-0 $@
HHHHHHHHHHHHHHHHEHHEHSHHHHHHHHEHHEHEHHHHHHHEEHEHEHEHEEEE
Recipes for lists of MARKDOWN SOURCES

pandoc/latex pdf assembled from markdown sources

R

.pdoc.pdf: %.mdsrcs
cat $< | python scripts/urls2paths.py | \
xargs cat | pandoc --from markdown -o $@
html from markdown sources
%.pdoc.html: %.mdsrcs
cat $< | python scripts/urls2paths.py | xargs cat | \
pandoc --from markdown --to html --standalone -o $@
2 column bare bones PDF using Report Lab from markdown sources
%.2col.pdf: %.mdsrcs
cat $< | \
python scripts/urls2paths.py | \
xargs cat | \
pandoc --from markdown --to html --standalone | \
python scripts/rl2cols.py --output $@

Recipes for lists of PDF SOURCES
(with possibly ffpage=start,end fragments)
%.scrp.pdf: %.pdfsrcs

python scripts/pdfsrcs.py $< $@ | bash
special rule for debugging variables
print-%:

@echo '$x=$($x)"

174

Flowcharts (Flow of
the chart —> chart of
the flow: on
demand!)

METHOD

22| Aflowchart is a type of diagram that represents an algorithm, work-
T flow, or process by showing the steps as boxes of various kinds
I|and depicting their order by connecting the boxes with arrows.
=|This diagrammatic representation illustrates a solution model to a
given problem. Flowcharts are used in analyzing, designing, doc-
umenting, or managing a process or program in various fields. 58

‘?@ WHY"i: Through flowcharts one will be able to analyze and
reflect on one’s own software situation.

9@ URGEMCY ! Using flowchart observation methods towards
analysis will result in on-demand revelation of flows, relations,
and connections previously obscured.

58 https://en.wikipedia.org/wiki/Flowchart

175

Hil

MOTE ! The term software situation is suggested as a good

replacement for software problem.

Sample Flowchart Questionnaire

1. Validate your situation?
2. Is it human or machine situation?
human machine I don't know
| | |

3. Choose a flowchart element that best describes your situation?
- ¢ ' 4

Operation = Represented as trapez r J
Process =» Represented as rectangle m

Decision = Represented as rhombus *
https://unicode-table.com/en/

According to your answer go to question 4.

4.1 Identify operation(s) that could
help you out through the situation?

4.2 Identify process(es) that could
help you out through the situation?

4.3 Identify decision(s) that could
help you out through the situation?

5. Was that actually helpful?

Yes No
| |
Done o. How does that make you feel?
(end of this questionnaire) (jump to the beginning)

176

(& soURCE

EXAMFPLE

177

The SOFTWARE SKETCHING OBSERVATION YUPPIES (SSoGY).

http://observatory.constantvzw.org/etherdump/c
linic.newflow.diff.html

Service Log

1. Microsoft word copy/paste situation

2. Machine or human situation: it's uncertain, but looks like ma-
chine situation as client tried to uninstall and reinstall, 6 months
later the situation repeated

3. & 4). Process: back up files, obtain a copy of OS of choice and
then reinstall Word. o) How she feels? Feeling angry

More info m see Rafaella flowchart pic

Appendix A:

IBM Ruler:

- IBM Flowcharting Template found at NAM-IP (= P.180)

- http://observatory.constantvzw.org/images
/wednesday/P1040728. PG

- left to right

- process - rectange

- input / output - skew square

- document - rectangle, but buttom line is a wave

- manual operation -

— communication link -

- preperation -

- merge - down-pointing triangle

- decision — rhombus

- connector - small circle

- magnetic tape - circle

- display -

- auxilary operation - square

- arrow head - four triangle

- manual input -

- Punched Card - rectangle with left cut edge

- Punched tape - like a flag

Burroughs Ruler:

- Burroughs Flowcharting Template found at NAM-IP (= P.181)

- http://observatory.constantvzw.org/images
/wednesday/P1040730.JPG

- Left to right, top to bottom:

- input/output = parallelogram

- Auxiliary operation = square / gyrational square

- Preparation - hexagon

- Drum or disk - oval

- Process - rectangle

- Off-line storage - triangle

178

179

On-line storage - like a quarter moon
Display - one side oval and one side a little oval
Manual input - rectangle, but top side askew / irregular
rectangle
Document - rectangle, but buttom line is a wave
Manual Operation - tilted rectangle
Magnetic Tape - circle but with a square on the buttom right
Connector - circle
Communication Link - a z shaped thingy
Decision - rhombus
. unknown x 2
Punched Card
Terminal
Punched Tape
Flow Direction
Card Deck

-.J
].
Ss308d
1
0/ 10eM
1

———t

Arers -
y
i v
&

“-I_.__*

VL AIHONNG
¥ s
-
*mﬁm
fuoat mﬁ‘m
s
i _ syPnoaang - J &
rlllllllllllllllIIII|IIIIIIIII|IIIIIIIHT'HIIIIlII|IIII|||H‘1IIIVIIIII NRERERENT

fu.

MWI '1=1'1-+‘FF'1-|'1- *

181 g

Appendix B
Friday:

15:30 - 16:15

We started our undertaking by analysing the rulers by IBM and
Burroughs. It seems that every symbol on the two rulers has a
specific shape and has a specific meaning. There are similari-
ties between the shapes on the two rulers. On the Burroughs
we found some symbols without descriptions. We tried to figure
out their meaning. We counted up the symbols on the IBM and
Burroughs rulers. The specific literature explained to us that engi-
neers have a kind of standard for these symbols. These symbols
are vocabulary.

16:15 - 16:40

We started with analyzing an educational flow chart as our case
example 59: We were able to figure out what the arrows on the
ruler meant. They are used in combination with the decision sym-
bol. In shape studies, triangles can be used to direct movement
based on the direction they point. In the flowchart, the options are
represented by rectangles and squares. In shape studies rectan-
gles and squares are stable. They're familiar and trusted shapes
and suggest honesty.

16:45 - 17:00

We analyzed a flow chart of a multiplication algorithm. Its content
illustrated an instruction to shift the number left or right . The
decision box instructed you to repeat it 32 times for the whole
number! The rectangles were again representing options, while
the flexible factors were illustrated by the rhombus, the symbol
for Decision. The final symbol with the title “Done” was illustrated
by something inbetween a circle and a rectangle.

59 https://en.wikipedia.org/wiki/Flowchart#/media/File:LampFl
owchart.svg

182

17:00 - 17:15

We realized in our undertaking that we needed to jump into an
internal perspective and get more familiar with the task of flow
chart drawing. For this flow chart we decided to chart the elevator
to the first floor from the perspective of the elevator. To achieve
this task we agreed to do field research and go to the first floor
by elevator for real. Some of us used this opportunity to smoke a
cigarette and to elaborate on the experience of the elevator. The
final goal is the create a flow chart based on our observations, but
we are going to do this tomorrow. 80

17:15 - 17:40

To round off the day we ended with some general reflections. It
seems that the different interpretations of symbols have been
integrated into flowcharts from the early ones of the 1920s until
now. 81 To put this knowledge into practice we started to sketch
out the flowchart on the wall using Post-its.

Current research goals:

 Flowchart or intervention: what is it like to be a elevator

 Zenit browser extension

* Iconographic analyses of flow chart symbols

* Call-flow && zenit modeling template for the drop-in clinic in-
terview

80 Further elevator ruminations were made through reference to Marc Isaacs. Lift. UK,
2001. https://www.youtube.com/watch?v=FINAvyLCTik

61 Justin Lau and Xing: Understanding Flowcharts. 2009

Saturday:

11:00 - 11:40
We updated our research followers and fellow researchers about
our undertakings.

14:45-18:00

Zenit(h) modeling/analysis

A method derived from a removal of textual informating from
flowcharts — related to previous work with Zenit: International
Review of Arts and Culture 62 created by Ljubomir Micic, founder
of Zenitism (Zenitizam) an early 20th Century movement, and
zenith — an imaginary point directly “above” a particular location,
on the imaginary celestial sphere 63

Connection inspiration: Procedure Flow Chart 64

Some historical experimentation examples:
http://www.e-w-n-s.net/minis-html/futuremil
lionaire/transition/v.gif http://www.e-w-n-s.
net/minis-html/futuremillionaire/transition/a
rrows.gif http://www.e-w-n-s.net/minis-html/
_navigation.htm

Material: Flow chart from Wikimedia Commons, the free media
repository 6%

Afternoon

Joseph working on all the ideas at the same time

Continue with flow chart elevator

Lara working on Zenit(h) modeling/analysis leading to call-flow
template, and zenit browser plugin

Michaela helping out the flow chart of the elevator as a case study

62 https://monoskop.org/Zenit

63 https://en.wikipedia.org/wiki/Zenith

64 https://helios.gsfc.nasa.gov/flowchart.html

85 https://commons.wikimedia.org/wiki/Flow_chart

184

185

Sources:

Software design 6, Flowchart %7, Software design description 8,
HTML Unicode UTF-8 %9, Penguin Dictionary of Symbols 7°, Flowchart
humour 71, Power Point as Knowledge Communication 72

Blank diagrams:

See Nothing Volume Three 73, Blank Diagrams #4: NSA Slides
of PRISM Program 74, Blank Diagrams #1 — Claude Shannon,
schematic diagram of a general communication system 7°

The Grammar of Shapes: http://vanseodesign.com/web
-design/visual-grammazr-shapes

66
6
6
6!
K

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Software_design_description
https://www.w3schools.com/charsets/ref_utf_geometric.asp
http://www.iausdj.ac.ir/ostad/DocLib71/J._C._Cirlot_Diction
ary_of_Symbols__1990.pdf
http://observatory.constantvzw.org/video/A_Computer_Glossar
y.webmi#t=02:26
http://computationalculture.net/article/one-damn-slide-afte
r-another-powerpoint-at-every-occasion-for-speech
http://silviolorusso.com/see-nothing-volume-three
http://silviolorusso.com/blank-diagrams-4-nsa-slides-of-pri
sm-program
http://silviolorusso.com/blank-diagrams-1-claude-shannon-sc
hematic-diagram-of-a-general-communication-system

S © ® N

7

oy

72

7
7

I

75

(& sourcE

How to create browser add on /or browser extension:

1.

w

5.

Make a new dir at your local machine. Lets called it adds-on &
and a folder called icons

. Make an icon for your browser extension
. Open text editor and copy paste this jason code
4.

You will need to modify the last two lines to point to the ether-
box.local & css to point to the extension.css
Make an css script place your css there

On the browser:

1. Go to extension

2. Load debugger from about:debugging
3. Load your extension

manifest.json:

{
"manifest_version": 2,
"name": "extension",
"version": "1.0",
"description": "this is the browser extensions",
"icons": {
"48": "icons/icon-name-here.png"
t,
"content_scripts": [
i
"matches": ["x://etherbox.local/*"],
"css": ["extension.css"]
%
]
%

Version 3384 Saved June 10, 2017. Authors: m, lara, carlin + 5
unnamed authors

186

ERAR

2NOITAVA3I280 3VICAVUI

9biz ani no pnisg
bninsad 10 slbbim a1 ni

— INVASIVE OBSERVATIONS —

Being on the side,
in the middle or behind

%
N

189

looking away from the ‘center’, towards
peripheries; observe the ‘negative’ space of
software. whats around it7¢

Infrastructure-as-a-service (IaaS)
cloud-computing services provide virtualized
system resources to end users, supporting each
tenant in a separate virtual machine (VM).
Fundamental to the economy of clouds is high
resource utilization achieved by sharing:
providers co-host multiple VMs on a single
hardware platform, relying on the underlying
virtual-machine monitor (VMM) to isolate VMs
and schedule system resources. While
virtualization creates the illusion of strict
isolation and exclusive resource access, in
reality the virtual resources map to shared
physical resources, creating the potential of
interference between co-hosted VMs. A
malicious VM may learn information on data
processed by a victim VM and even conduct
side-channel attacks on cryptographic
implementations. 7’

76 Techno-Galactic Software Observatory: Notes from the Observatory on glossaries
and vocabularies. 2017

77 F. Liu et al.: “Last-Level Cache Side-Channel Attacks are Practical’. In: 2015 IEEE
Symposium on Security and Privacy. May 2015, pp. 605-622. DO 1:
10.1109/SP.2015.43, pg.605

2|Unlike proprietary software, Service as a
Software Substitute (SaaSS) does not require
covert code to obtain the user’s data. Instead,
users must send their data to the server in
order to use it. This has the same effect as
spyware: the server operator gets the
data—with no special effort, by the nature of
SaaSS [. . .] With SaaSS, the server operator
can change the software in use on the server.
He ought to be able to do this, since it’s his
computer; but the result is the same as using
a proprietary application program with a
universal back door: someone has the power to
silently impose changes in how the user’s
computing gets done. 78

78 Richard Stallman: What Does That Server Really Serve? en. June 2012. Visited on
Jan. 31, 2018

190

METHOD

Something in the
Middle Maybe
(SItMM)

b
IN

&

191

F E M E M E E F

In the sexist and militarized language of computer security
a “man in the middle” attack refers to a kind of surveillance
where an attacker relays and possibly alters the communi-
cations of two peers that believe they are communicating
directly to each other. These peers may or may not be hu-
man.

WHAT:: SitMM allows the Software Curious Person to
observe the network connections that your software makes to
the outside world. Software running in an isolated device might
be powerful, but when the device is networked it becomes a peer
in a wilderness of millions of agencies, some benign, some less
so. It is in the network that machines touch, fluctuate, and
penetrate each other in a promiscuous non-stop bath of data
packets, some real, some spoofed.

Holli: SitMM takes a closer look at the network traffic coming
from/going to a software curious person’s device. The Software
Curious Person using SitMM may start the sniffer functionality
with a single click of a button, perform the interaction with the
device that they wish to observe and SitMM will issue a report at
the end of that interaction.

The Software Curious Person gets to observe their own traffic.
Ideally, observing ones own network traffic should be available to
anyone, but using such software may be deemed illegal in some
jurisdictions.

For example, in the US, Wiretap Law limits packet-sniffing to par-
ties that own the network that is being sniffed. Alternatively the
party that sniffs the network must have consent from communicat-
ing parties. Section 18 U.S. Code 8 2511 (2) (a) (i) says:

It shall not be unlawful ... to intercept ... while engaged in

any activity which is a necessary incident to the rendition of
his service or to the protection of the rights or property of the
provider of that service

See here for a paper ’° on the topic.

It is no surprise that Google went on a big legal spree to de-
fend their right to capture unencrypted wireless traffic with Google
StreetView cars. The courts were concerned about wiretapping
and infringements on the privacy of users, and not with the lever-
aging of private and public WiFi infrastructure for the gain of a
for-profit company. The case raises hard questions about state,
corporate, and individual claims on the use of information, and the

7 http://spot.colorado.edu/ sicker/publications/issues.pdf

192

material reality of WiFi signals. So, while WiFi sniffing is common
and the tools like SitMM are widely available, it is not always pos-
sible for Software Curious Persons to use them legally or to neatly
filter out the network “traffic” of one specific individual from that
of “others”, as networks often act as carriers to the interactions of
many people.

WHEM :: SitMM can be used any time a Software Curious
Person might suspect that their software is connecting to
external parties, perhaps by “calling home”, the name for when a
piece of software contacts its manufacturer to gather usage
metrics or device details that they might be collecting
illegitimately. For example untill 2014, when a user first signed up
to WhatsApp the entire list of contacts in the user’s phone was
sent to WhatsApp servers, which allowed WhatsApp the
company to build the largest (but invisible) social network in the
world. At the time, it's network was bigger even than Facebook’s.

%@ WHY'i: SitMM is intended to be a tool that gives artists,

designers, and educators an easy to use custom WiFi router to
work with networks and explore the aspects of our daily
communications that are exposed when we use WiFi. The goal is
to use the output to encourage open discussions about how we
use our devices online.

9@ URSENCY !t “Something in the Middle Maybe” wants to be a

193

sousveillance software with various goals. Perhaps the most
important goal is to demilitarize and emasculate the language of
computer security. By introducing gender-neutral terminology
and ambiguity, SitMM brings poetry where before there only was
room for engineered surveillance. SitMM aims to be usable and
accessible to non-experts and is meant as a working tool for
artists and designers alike.

MO TE @ SitMM builds on a tool called scapy 8 to implement what
is called a network packet sniffer.

Snippets of a Something In The Middle, Maybe - Report

UDP 192.168.42.32:53649 -> 8.8.8.8:53

TCP 192.168.42.32:49250 -> 17.253.53.208:80

TCP 192.168.42.32:49250 -> 17.253.53.208:80

TCP/HTTP 17.253.53.208:80 GET http://captive.apple.com/mDQArB9orEi
TCP 192.168.42.32:49250 -> 17.253.53.208:80

TCP 192.168.42.32:49250 -> 17.253.53.208:80

TCP 192.168.42.32:49250 -> 17.253.53.208:80

UDP 192.168.42.32:63872 -> 8.8.8.8:53

UDP 192.168.42.32:61346 -> 8.8.8.8:53

TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443
TCP 192.168.42.32:49260 -> 17.134.127.97:443

HHHHHHHHHEHHHHHEHEHHEEEEHHHEEEHHEEEEHEHEEEEEEHEEEE
Destination Address: 17.253.53.208
Destination Name: nlams2-vip-bx-008.aaplimg.com

Port: Connection Count
80: 6

HHHHHHHHHHHHHEHEEHEEHEEHERHERHEREHRHERREREHREEREEE
Destination Address: 17.134.127.79
Destination Name: unknown

Port: Connection Count

443: 2
THHHHHHHHHHHEHHEHHHHHHHHHHHHHEHHHEHEHEHHHEHEEEEREE
Destination Address: 17.248.145.76

80 http://www.secdev.org/projects/scapy/

194

Destination Name: unknown

Port: Connection Count
443: 16

https://github.com/AlternativeLearningTank/Somet
hingInTheMiddle/

K®soURCE

¥ soURCE

195

SitMM emerges from the itinerating practice of Luis Rodil-Fernandez,
crossed with those of Jogi Hofmueller, BalkonTactics and the
Alternative Learning Tank. SitMM is deeply indebted to projects that
have served as inpiration such as Dowse = http://dowse.e
quipment/, alt.exit » http://alternativelearningtank
.net/ andthe NetAidKit » https://netaidkit.net/.http
://observatory.constantvzw.org/SomethingInTheMid

dle/

What is it like to be
AN ELEVATOR*?

METHOD

Mo TE :1(*) Where this method refers to AN ELEVATOR, the name
of any comparable software system may be substituted.

SN

WHAT!:: Understanding software systems by becoming them.

<P

Hauli Creating a flowchart to incarnate a software system
you use everyday.

196

WAERMIMG i Uninformed members of the public may panic

when confronted with a software performance in a closed
space.

@XQMPLE + What is it like to be an elevator?

197

what
is

it
like
to be
an

elevator?

"from 25th floor to 1st floor"

light on button light of 25th floor
check current floor
if current floor is 25th floor
no
if current floor is ...
go one floor up
. smaller than 25th floor
go one floor down
. bigger than 25th floor
stop elevator
turn button light off of 25th floor
turn door light on
open door of elevator
play sound opening sequence
yes
start
user pressed button of 25th floor
close door of elevator
if door is closed

user pressed 1lst floor button

198

¥ soURCE

199

start timer for door closing
if timer is running more than three seconds
yes

yes

light on button

go one floor down

no

if current floor is 1st floor
update floor indicator

check current floor

stop elevator

no

yes

light off button

turn door light on

open door of elevator

play sound opening sequence
end

update floor indicator

What is it like to be ? was developed by Joseph Knierzinger, Michaela
Lakova + other members of the SSOGY group.

what
is
yes. no It
like
to
be
an
elevator?

"from 25th floor to 1st floor"

200

"What is it
like to be an
elevator?"

2K U
o &d o1 8
Trotowsls

METHOD

&

Side Channel

Analysis

WHAT:: A side channel attack is conducted by taking
advantage of “leakage from boundaries”. They are made
possible by disregarding the abstraction of software into pure
logic and focusing on the physical effects of the running of
software which become backdoors to observe its functioning,
hence re-affirming the materiality of software.

Ho W As software runs on hardware, it emanates

| radio-magnetic waves, and you can, for example, build an

b,
IN

antenna to capture these waves and then by analyzing them,
reconstruct what the software is doing.

F E M E M E E F

“Hardware lives in the real world and real world properties
lead to side channels.”

ﬁuHo .+ bad guys/good guys

202

WARMIMG i engineers are good guys!

(& sourcE

Y

203

This method is inspired by a talk by Thomas De Cnudde from the
COSIC research group at the department of Electrical Engineering,
KULeuven. Notes from his presentation: http://observatory.c
onstantvzw.org/etherdump/side-channel-analysis.d
iff.html

IMASES ! Thomas De Cnudde from the COSIC research group at
the department of Electrical Engineering, KULeuven P.204

T T

2noiTo3l11092
a2noiisvisado pniligmod

COLLECTIONS
Compiling observations

::|Each group will thus contain all the records
pertaining to or embracing a particular
statistical item, and by counting the cards the
numerical value of that item can be readily
ascertained. Having thus separated the
record-cards into general divisions, (and, if
desired, subdivided each group on the same
plan.) any additional series of statistical
items can be compiled either by the further
division or subdivision of the record-cards or
by passing all the cards or certain groups only
through the electrical apparatus. 8l

81 Herman Hollerith: “Art of compiling statistics”. US395781 A. Jan. 1889. Visited on
Jan. 31, 2018, pg.4

207

METHOD

@

Hil

ExAMFPLE

Compiling a bestiary
of software logos

WHAT:: The visual culture of software has relied heavily on
animal representations since the early days of GNU/Linux. This
tendency was cemented into a tradition through the
line-drawings used on the covers of the ubiquitous O'Reilly
publications 82. What actors are populating the realm of software
observation, and to what effect?

Compile a collection of logos and note the metaphors for obser-
vation and their surrounding vocabularies. How are different rela-
tions between observers and objects of observation established
through a combination of vocabularies and images?

This Bestiary was initiated during Testing the testbed, a two-day
workshop intended to critically evaluate the Internet of Things
(loT) Inspector, a testsuite for embedded devices proposed by
the Princeton University’s Center for Information Technology and
Policy (CITP). Participants from Constant, Dyne:BXL, COSIC Leu-
ven and others gathered to test the testbed with the help of their
cameras, smartphones, and other “things”. As we compared dif-
ferent hard- and software set-ups for observing dataflows in IoT
environments, we noticed that many of them were represented
by animals and other agents with human traits that would perform
the job of looking, analysing, inspecting and investigating. Here,
we have expanded the initial collection to address network obser-
vation in general. What does it mean to “look” at the activity in a
computer network? Who or what is looking and in what way?

82 http://animals.oreilly.com/browse

208

Autopsy®
https://www.sleuthkit.org/autopsy
tags: investigation, dissection, forensics

[legacy] Hound dog with face mask and
surgeon hat.

Doberman dog with black scarf clenching a
magnifying glass between his teeth.

“Autopsy® is a digital forensics platform and graphical interface
to The Sleuth Kit® and other digital forensics tools. It is used by
law enforcement, military, and corporate examiners to investigate
what happened on a computer. You can even use it to recover
photos from your camera’s memory card.”

209

Dowse

http://dowse.eu
tags: divination, transubstantiation, clairvoyance

Instrument touching or stirring liquid which is held in a
round receptacle.

“Dowse is a transparent proxy facilitating the awareness of ingo-
ing and outgoing connections, from, to, and within a local area
network. Dowse provides a central point of soft control for all local
traffic: from ARP traffic (layer 2) to TCP/IP (layers 3 and 4) as well
as application space, by chaining a firewall setup to a transpar-
ent proxy setup. A core feature for Dowse is that of hiding all the
complexity of such a setup.”

210

211

Ghostery

https://www.ghostery.com
tags: ghostbusting, time travel, immaterialization

Friendly bright blue ghost with see-through eyes.

“Faster, safer, and smarter browsing. Ghostery helps you browse
smarter by giving you control over ads and tracking technologies
to speed up page loads, eliminate clutter, and protect your data.”

Hovelbot

http://www.constantvzw.org/site/On-Journey-w
ith-Hovelbot,2661.html
tags: exploration, sight-seeing, exquisite corpse

Two pixelated snowy mountains floating between a message ‘enjoy the ride’ (in

three languages).
“Hovelbot is a computer program that, just like Frankenstein’s mon-
ster, quietly observes how humans live, in order to learn and be
able to share its stories with them. The visitor is asked to connect
her phone to a local network. By doing so, the visitor can observe
how the hidden activity happening on her device is giving form to
Hovelbot. In turn, Hovelbot takes its unintentional “teachers” on
a journey that, even though it might remind us of the 19th cen-
tury romantic pursues, will rather be a confrontation between our
networked self and the artificial beings that make this network."

212

lot inspector

http://www.iot-inspector.com
tags: rangefinding, voyeurism, scouting

Wireless signal looking through binoculars.

“Detect vulnerabilities in the firmware of loT devices, no source
code required, instant results, comprehensive reporting and alert-
ing, covers a broad range of 10T devices, including IP Cameras,

Routers, Printers and many more, ISP specific solution for CPE
devices available. Inspection as a service.”

213

Privacy Badger

https://www.eff.org/privacybadger
tags: outsmarting, watching you watching me, shielding

Grinning badger looking cheeky.

“Privacy Badger is a browser add-on that stops advertisers and
other third-party trackers from secretly tracking where you go and
what pages you look at on the web. If an advertiser seems to be
tracking you across multiple websites without your permission,
Privacy Badger automatically blocks that advertiser from loading
any more content in your browser. To the advertiser, it's like you
suddenly disappeared.”

214

The Sleuth Kit®

https://www.sleuthkit.org
tags: inspection, protection, hard-boiled

[legacy] Hound dog with a fedora hat looking
clueless at a laptop.

Hound dog looking fierce and defensive.

“The Sleuth Kit® (TSK) is a library and collection of command line
tools that allow you to investigate disk images. The core function-
ality of TSK allows you to analyze volume and file system data.
The plug-in framework allows you to incorporate additional mod-
ules to analyze file contents and build automated systems. The
library can be incorporated into larger digital forensics tools and
the command line tools can be directly used to find evidence.”

215

Little Snitch

https://www.obdev.at/products/littlesnitch
tags: tattletaling, whistleblowing

[legacy] A small humanoid figure (it could
also be a duck?) wearing glasses, a red-blue
striped propeller hat and blowing a whistle.

Orange striped propeller hat, so-called
‘geek-attire’.

“As soon as you're connected to the Internet, applications can
potentially send whatever they want to wherever they want. Most
often they do this to your benefit. But sometimes, like in case of
tracking software, trojans or other malware, they don’t. But you
don’t notice anything, because all of this happens invisibly under
the hood. Little Snitch makes these Internet connections visible
and puts you back in control!”

216

217

Netflix Stethoscope

http://techblog.netflix.com/2017/02/introducin
g-netflix-stethoscope.html
tags: auscultation, stretching out, diagnostic

Vacantly smiling giraffe carrying a
stethoscope.

“Netflix is pleased to announce the open source release of Stetho-
scope, our first project following a User Focused Security ap-
proach. The notion of User Focused Security acknowledges that
attacks against corporate users (e.g., phishing, malware) are the
primary mechanism leading to security incidents and data breach-
es, and it's one of the core principles driving our approach to
corporate information security. It's also reflective of our philos-
ophy that tools are only effective when they consider the true
context of people’s work. Stethoscope is a web application that

collects information for a given user’s devices and gives them
clear and specific recommendations for securing their systems. If
we provide employees with focused, actionable information and
low-friction tools, we believe they can get their devices into a more
secure state without heavy-handed policy enforcement.”

The Transparency Grenade

https://transparencygrenade.com
tags: explosion

Translucent replica of a Soviet F1 Hand Grenade.

“The lack of Corporate and Governmental transparency has been
a topic of much controversy in recent years, yet our only tool for
encouraging greater openness is the slow, tedious process of
policy reform. Presented in the form of a Soviet F1 Hand Grenade,
the Transparency Grenade is an iconic cure for these frustrations,
making the process of leaking information from closed meetings
as easy as pulling a pin.”

218

Wireshark

https://www.wireshark.org/
tags: knifing through, smelling blood, sinking teeth

Shark fin cutting through ocean waves.

“Wireshark is the world’s foremost and widely-used network proto-
col analyzer. It lets you see what's happening on your network at a
microscopic level and is the de facto (and often de jure) standard
across many commercial and non-profit enterprises, government
agencies, and educational institutions. Wireshark development
thrives thanks to the volunteer contributions of networking experts
around the globe and is the continuation of a project started by
Gerald Combs in 1998.”

& SEE ALSO..
Y Glossaries as an exercise
= P.106

W SEE ALSO:
Y Testing the testbed: testing software with observatory ambitions

» P22QSWOA)

219

METHOD

&

Testing the testbed:
testing software with
observatory
ambitions (SWOA)

WHAT:: Observing Software With Observatory Ambitions
(SWOA).

HaLli The interwebs hosts many projects that aim to
produce software for observing software, or simply Software with
Observatory Ambitions. A comparative methodology can be
produced by testing different SWOA to observe software of
interest. Comparing SWOA reveals what is considered as worthy
of observation (e.g., what protocols, what space, which devices),
the granularity of the observation (e.g., how is the observation
captured, in what detail), the logo and conceptual framework of
choice that underlies the SWOA, as well as its architecture (e.g.,
gradware, SWOA as a service). Observing SWOAs puts their
observatory ambitions to the test. It enables an analysis of what
is made transparent, what is made invisible, and how, as a result,
SWOAs can reconfigure power.

220

\ WHEM :: Ideally, SWOA can be comparatively observed
whenever you feel the urge.

g WAERMIMG ! Institutions, laws, and administrators like to

limit the use of SWOA to people who are running these net-
works. Hence, we are presented with the situation that the
use of SWOA is condoned when it is done by researchers
and pen testers (i.e., they were hired) and shunned when
done by others (often subject to name-calling as hackers or
attackers). This may hamper your ability to observe SWOA
at work.

ﬁuHo i1 If you can run multiple SWOAs, you can do it.

% WARMIMG:: We find that observation can surface power

asymmetries and lead to defensiveness or desires to escape
the observation in the case of the observed, or an instinct to
try to conceal that observation is taking place. Will people
like it if you turn your gaze on their SWOA?

E MO TE i1 Good SWOA uses an animal as a logo.

e

WARMIMG:: Many of the SWOA projects we looked at

are promises more than running software or available code.
Much of it is obsolete gradware, making observation difficult.

F E M E M E E F

Most software has a recursive observatory ambition (it wants
to be observed in its execution, output etc.). Debuggers,
logs, dashboards are all instances of software with observa-
tory ambitions. Continuous integration is the act of folding
the whole software development process into one big feed-
back loop. So, what separates SWOA from software itself?
Is it the intention of observing software with a critical, agonis-
tic or adversarial perspective vs. one focused on productivity
and efficiency?

222

The “original testbed” was proposed by collaborators at Princeton
University. Testing this particular testbed happened at a workshop in
Brussels organized by Constant[’[{http://constantvzw.org/s
ite/Testing-the-testbed,2739.html}.

(& soURCE

@XQMPLE 1 To elucidate this method further, one can take a
|

&
Y

ook at the [Something in the Middle Maybe], which is an
instance of a SWOA. To complete a comparative analysis use
different sniffing software to observe wireless networks, e.g.,
wireshark vs tcpdump vs SitMM.

SEE ALSO:.
Compiling a bestiary of software logos

=» P.208

&
Y

SEE ALSon
Something in the Middle Maybe (SitMM)

=» P.191

223

METHOD

Prepare a Reader to
think theory with
software

@ WHAT:: Compile a collection of texts about software.

ST

ExAMFPLE

Houli Choose texts from different areas. Software
observations are mostly done in the realm of the technological
and the pragmatic. The ecology of texts around software includes
first and foremost manuals, technical documentation, and
academic papers by software engineers which all live in different
realms of expertise. More recently, the field of software studies
opened up additional perspectives fuelled by cultural studies and
sometimes philosophy. A Reader allows all of these different
kinds of text to intersect and intermingle. It helps to understand
the many types of vocabularies that exist around software, and
to see what types of observation each of them invites.

MO TE i Selected quotes from the reader are used to introduce
each of the chapter headers in this guide.

Chapters and index from the Techno Galactic Software Observatory
reader:

224

225

Il. WHAT IS SOFTWARE

Viewing software in the long-term context of historical ‘numerical
artefacts’ is an occasion to reflect on the conditions of its ap-
pearance, and allows us to take on current-day questions from a
genealogical perspective. What is software? How did it appear as
a concept, in what industrial and governmental circumstances?
The selected texts explore the materiality of software, its relation
to hardware, language, discourse and abstraction with each their
own way of questioning and proposing agendas and assumptions.

Herman Hollerith. Art of compiling statistics. U.S. Patent 395,781
filed June 18, 1887, and issued January 8, 1889.
Jean-Francois Blanchette. “A material history of bits.” JASIST
62, 1042-1057. 2011.

David A. Patterson and John L. Hennessy. Computer Organization
and Design, Fifth Edition: The Hardware/Software Interface
(5th ed.). Morgan Kaufmann Publishers Inc, 2013

Friedrich Kittler, “There Is No Software,” Ctheory (October 18,
1995)

Thomas Haigh, Mark Priestley, Crispin Rope, Reconsidering
the Stored-Program Concept, IEEE Annals of the History of
Computing Volume 36, Number 1, January-March 2014
Wendy Hui Kyong Chun. “Programmability.” In Software Studies:
A Lexicon, edited by Matthew Fuller, 224-229. MIT Press,
2008

Fourth Estate, 1997

David Nofre, Mark Priestley, Gerard Alberts, When Technology
Became Language: The Origins of the Linguistic Conception
of Computer Programming, 1950-1960. in Technology and
Culture, 55(1), 40-75. 2014

Graham White. Hardware, Software, Humans: Truth, Fiction
and Abstraction. HISTORY AND PHILOSOPHY OF LOGIC
vol. 36, (3) 278-301. 2015.

Sadie Plant, Zeros + Ones: Digital Women + The New Technoculture.

Il. WHEN AND WHERE IS SOFTWARE

How do layers of abstraction have an effect on the way software
is produced and vice versa? What is the space-time dimension of
IT development or where and when is software made today? The
way computer programs and operating systems are manufactured
changed tremendously through time, so its production times and
places changed too. From military labs via the mega-corporation
cubicles to the open-space freelancer utopia, the texts in this
chapter trace the ruptures and continuities in software production.
From time-sharing to user-space partitions and containerization,
this chapter looks at the separations at work. What happens to the
material conditions of software production (factory labor, hardware
but also minerals) when it evaporates into a cloud?

John Harwood, The Interface: IBM and the Transformation of
Corporate Design, 1945-1976. University of Minnesota Press,
2011

Nathan Ensmenger, The Computer Boys Take Over: Computers,
Programmers, and the Politics of Technical Expertise, 2010
Ellen Ullman, Close to the Machine: Technophilia and Its Dis-
contents. City Lights Books, 1997

Femke Snelting. Dividing and sharing. 2009

Hamid Ekbia and Bonnie Nardi, Heteromation and its (dis)contents:
The invisible division of labor between humans and machines.
First Monday 19(6) - June 2014

Richard Stallman, Who does that server really serve?. 2016
Critisticuffs. Free Property - On Social Criticism in the Form of
a Software Licence. 2013

Seda Gurses and Joris van Hoboken. “Privacy after the Agile
Turn.” Open Science Framework, 2016.

Christoph Neubert, “The Tail on the Hard-ware Dog”: Historical
Articulations of Computing Machinery, Software, and Services
in Irina Kaldrak and Martina Leeker, There is not software,
there are just services. 2015

226

227

lll. OBSERVATION AND ITS CONSEQUENCES

The development of software encompasses a series of practices
whose evocative hames are increasingly familiar: feedback, re-
port, probe, audit, inspect, scan, diagnose, explore ... What are
the systems of knowledge and power within which these activi-
ties take place, and what other types of observation are possible?
The material in this section is a compendium of probes such as
learning by doing; exploring software through the analysis of its
language and grammar; critical ethnography and self-testing as a
user. In addition, we have included some conventional methods
and tools for increasing the performance and security of software.
Appropriating them for Techno-galactic software observation first
of all turns the gaze onto the process of observation itself, and
eventually opens up possibilities to actively interfere with the func-
tioning of software.

Lilly Irani, Hackathons and the Making of Entrepreneurial Citi-
zenship, 2015

Kara Pernice (Nielsen Norman Group), Talking with Participants
During a Usability Test, January 26, 2014,

Matthew G. Kirschenbaum, Extreme Inscription: Towards a

Grammatology of the Hard Drive. 2004

Alexander R. Galloway, The Poverty of Philosophy: Realism

and Post-Fordism, Critical Inquiry. 2013

Edward Alcosser, James P. Phillips, Allen M. Wolk, How to

Build a Working Digital Computer. Hayden Book Company,

1968

Matthew Fuller, “It looks like you're writing a letter: Microsoft

Word”, Nettime, 5 Sep 2000

Barbara P. Aichinger, DDR Memory Errors Caused by Row

Hammer. 2015

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical.
2015

5. HOLLERITE.

Patent: H. Hollerith. Art of compiling statistics

228

229

Also by the author

Editor:
Flyposter Frenzy: Posters from the Anticopyright Networe
Unnatural

CoBditor:
'README! ASCH Culture and the Revenge of Krowledge

Author:
AT

. BEHIND THE BLIP

ESSAYS ON THE
CULTURE OF SOFTWARE

MATTHEW FULLER

7/ AUTONOMEDIA

At copyright for non-commercial publication.
Copyright © 2008 Matthetr Fullr othervise
All ights reserved.

Autonomedia
POB. 568 Williamsburgh Station
‘Brooklyn, NY 11211.0568 USA.
Phone & Fox: 718.969.2603
email: info@uutonomedia.org
Dtpiewr autonomedia.org

Book desiga: Dave Mand
15BN 1570271399

Printed in Canada

For Mandie, Leon, Milo, d Rasa

Cyberpunk meets software studies: Matthew Fuller, “It looks like you're writing a

letter: Microsoft Word”

Orgina A

S g o

Hackathons s S
and the Making T
of Entrepreneurial "SeAce
Citizenship

Lilly trani'

Abstract
Today the hals o Technology. Entercainment, and Design (TED) and Davos

can transform ctizenship, development, and education alike. This arcile

hackathon, one emblematic ste o socil practice where techniques from

Hackathons sometmes prodice technologies, and they shways. however,

produce subjects. This artcle argues that the hackathon rohearses an
ship colebrated in cransnatonal culures that orient
<omard Siicon Valley for mode 1 ‘opamisic, hgh

velocky pracace allgns, n Indi, with middie-chass pliics that favor uick

Ol s o A USA
iy o Do ot Conmnicaion s S s Progam, Uiy of
il S g 500 G 1 5003 L o, CA 7209, U5,
EnatiranGucst e

2 Scnce, Technoby, & Human Vabes

Keywords
developmens,fuures, enrepreneur

im, cizenship, technology

Introduction

come tosignfy callsboraton, voluntarism, optmism, and wealth, esed n
iware practce and ready to cater new domains of public . Ex-Wired
ditor Chiis Anderson (2012) wrote:

‘and work together on the Web. The next ten years wil be about applying
hose lessan o the e workd

Andrson's prdiction—one whih e purses o s ovn

practice of public . This celebraton of eienifi and engincerin cthos
in everyday 1 in the United Stats and Europe lags behind formerly
Colonized counris like Indi, where modernizing nationaliss have long
held up cientsts and engineers as moelcitizens (5. Roy 2007; Abrabarm
2006)-Scientific and technological pracices do not only make knowledze
and things, people also drw on the legitimacy of technoscience 1o

s arice o an bkt onc cmblemtc s of o
chmiques fom the Web make their way into “the real
o ko i sore progranmas nd defners ot
for e, oty s roducion i, A ckatons

Rkt mors poveraly oot enpriooul safos. Ty
i gty o ptmiam bkt of deg and kg o
change the world. Partcipant in_ hackathons imagine themselves as
agents of social progres throug h(m\v.xrc and these middie-clas efforts
o remake culure draw legitimacy fom the global prsige of eshnology
indusiry work pracices. The arile uses etnographic and historical
‘methods to make the case

ackathons s prodce el

duce su

e st and socil andrs produced i valrised in practices of

andthey alays, however,

Science studies ethnography: Lilly Irani, Hackathons and the Making of

Entrepreneurial Citizenship

230

231

Extrome Inscription: Towards a Grammatology of the
Hard Drive’

Mathew G. Kirschanbaum
Univrsity of Maryiand
mgk@umd odu

Aosract

e o atonpt b el e grommstlgical i
e oftheHand v, the i koo ot s b h i

s mpoct on computng i s s hlf o he 08 conr,Rher
i offo et avhe serlzd ccoun ofclcioni sl my
obiee i ki cy s 1 e one spec weiig

v soca techicl, and e Randors s ik o
ey ——
i eh s Lev Manowich s o fundamentl 1 e . he i
o ofhad dive scinoes s e n e sy s s the culral
mpactof e hrd e e et e 1P, T, and G

i

e, prevl s e wedis hors

v sl e e

e s v hav evolvd ey wokd have
[i o mene s
R i et ot h concion hat e ion
Ji o b sway he bt ofcach
i proporio 4 s rvernt s sowers
o o e s - vl e o o
e comerhan e o, e e Wi o
i e

v oy
cusomers hd e

moming. one of my
WINNT 561 e v crh. 1 s b,
youcoldhsrth e rdin e e An Tl nose

77008 exT

mology 91

g 16 o ol s from st ard v, and-

06, 2005 @125578

e 3 writn s gl septon vl 1t e, bt i ot
{nsrumenlly andtecable o physialy el Soyig 5 st
el poptonb s e ool e
e s e Sty S e

o the v we call ard dives. The R e
rexme

s S sy e we il
Tl th i sy dow

s o e s o 3 it Kier o more
ey i Gt st 5ol i o ot 008 e o
o s i, v s o e
ke and ke, O ersdin wiing sl

o o et o o oo

NamberZ. 2007 TEXT Tehnaoay %

Media studies: Matthew G. Kirschenbaum, Extreme Inscription: Towards a

Grammatology of the Hard Drive.

DDR Memory Errors Caused
by Row Hammer

Barbara P. Aichinger

Vice President New Business Development

Outline
What is Row Hammer?
What Research has been done?
-CMU
— Google Project Zero
— Java Script
— Third IO
ECC
Mitigation Strategies
Software that creates Row Hammer
Summary

What is Row Hammer?

« Disturbance Errors: Row to Row Coupling

Excessive ACTIVATE
commands apply
repeated charge to

Electromagnetic
feld induced by

applied voltage

Cellslose charge by

SR EEEEEENE NN
field,

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Jeremie Kim! Chris Fallin® Ji Hye Lee
Onur Mutla"

Yoongu Kim' Ross Daly*

Chris Wilkerson® Konrad Lai
el Labs

Technical presentation slides: Barbara P. Aichinger, DDR Memory Errors
Caused by Row Hammer

232

& SEE ALSO:: Ask several people from different fields and age
Y groups the same question: "What is software?"
= P49

The Technogalactic Software Observatory reader can be consulted
here: http://pad.constantvzw.org/p/observatory.rea
der

K®soURCE

233

Keyword Index

Abstraction, 56, 202, 225, 226

Abuse, 11

Accident, 47, 163

Agility, 5, 108, 135-137, 139, 141—
144, 165, 168, 226

Air, 98, 141, 143, 144, 170

Algorithm, 175, 182

Ambiguity, 49, 114, 193

Assembly, 31, 35, 44

Attack, 108, 191, 202

BeOS, 124, 126
Binary, 18, 50, 154
Bits, 50, 225
Bounce, 108, 170
Bug, 108, 150, 151
Bull, 18, 29
Bullshit, 156, 159
Bytes, 50

Catastrophe, 122

Cobol, 44

Colonialism, 5, 108

Command line, 108

Compilation, 33, 37, 45, 106, 108,
208, 224, 225, 228

Control, 15, 71, 210, 211, 216

Convenience, 65, 69, 70, 102, 108,
141

Cost, 41, 61, 112, 122-124, 129,
131

Crash, 108

Critique, 3, 4, 6-9, 16, 150, 156,
222,227

Debugging, 56, 150, 174, 186, 222

DecAlpha, 126

Decentralization, 167

Digital Equipment Corporation, 39,
42

Dirty, 108, 151, 153-155

Emotion, 30, 89, 108, 119, 129,
163

Error, 31, 35, 40, 151, 155, 168

etherbox, 50, 98, 147, 153, 155,
186

Ethics, 122

Executable, 15, 41, 52, 62

File, 37, 50, 52-54, 56, 57, 59, 93,
95, 96, 104, 114, 115,
120, 123, 129, 151,
153-155, 159, 172,
177,182, 215

File system, 50, 53, 151, 153

Flow, 3, 4, 94, 108, 166, 172, 175,
179, 182-184

Fortran, 31, 35, 36, 44

Free Software, 124, 129, 130

Friendly, 42, 45, 46, 147, 211

Gesture, 162
Ghost, 5, 211

236

237

Glitch, 147

Habit, 122

Hard-boiled, 150, 215

Healing, 156

Hexadecimal, 50

History, 30, 31, 43, 96, 101, 122,
131, 225

IBM, 37-39, 43, 44, 61, 178, 182,
226

Idiosyncracy, 172

Incarnation, 196

Inspection as a Service, 189

Integration, 167, 168, 170, 222

Interface, 6, 29, 47, 53, 61, 156,
157, 159, 160, 209,
225, 226

Internet of Things, 208, 213

Intimacy, 57, 69, 108, 120

IRIX, 126

JAVA, 44, 46, 47
Kernel, 45, 53, 58, 62, 92, 93, 108

Linux, 45, 53, 62, 63, 93, 96, 126,
129, 130, 208

MacOs, 126

Magic, 33, 45, 101, 108, 156

Mainframe, 37, 39, 42, 61

Materiality, 71, 124, 184, 193, 202,
225-227

Measuring, 89, 90, 92, 97

Military, 191, 209, 226

Minitel, 43

Misunderstanding, 11

Musée de I'Informatique Pionniéere
en Belgique, 18, 26,
29, 50, 178

Noise, 64, 65, 69, 94, 109

Obfuscation, 172
Office, 35, 40, 64, 65, 69, 70, 98

Panic, 197

Parody, 156

Passive-aggressive, 109

PDP11, 40

Perl, 44, 47

PL-1, 44

Poetry, 156, 193

Problems, 40, 120, 121, 126, 159

Productivity, 3, 5, 6, 79, 83, 115,
129, 165, 222, 226

Professionalism, 6, 70, 126, 139,
141

Promiscuity, 109, 171, 172, 191

Reconfiguration, 167

Relational, 5, 30, 109, 121, 123,
126, 129, 131, 175,
208

Relaxation, 64, 94, 141

RKO07, 40

Scroll, 79, 83, 109
Scrum, 109, 136, 141, 143
Separation, 57, 62, 120, 207, 226

Silence, 65, 69, 109

Software as a Critique as a
Service, 8, 9

Software as a Service, 3

Software with Observatory
Ambitions, 220-223

Solaris, 126

Statistics, 207, 225, 233

Stress, 103

Success, 15, 170

SunOSs, 126

Surveillance, 191, 193
Survival, 11, 109
System memory, 52, 58, 124

TCP/IP, 43, 210

Terms of use, 40, 106, 115, 124,
131

Therapy, 120

Time, 4, 11, 17, 26, 31, 35, 36,
39-44, 53, 61-63, 73,
85-87, 89-98, 101,
109, 119, 121, 124,
126, 129, 130, 144,
148, 151, 154, 155,
163, 184, 193, 211,
226

Timeless, 120

Touch, 17, 18, 29, 37, 142,
173,191, 210

143,

Unix, 39-42, 44-47, 50, 52, 53, 85,

86, 91, 120, 126
Useless, 79, 83, 103, 104, 109
UUCP, 41, 45

VAX, 42

Virtual, 42, 57, 189

Vocabulary, 50, 101, 106, 107,
182, 189

Vulnerability, 3

Windows 95, 33, 45, 126

XIOPEN, 42, 43

238

239

Read Further!

Bentley, Jon and Don Knuth: Programming Pearls: Literate Programming. In: Commun.
ACM 29.5 (May 1986), pp. 384-369. IssN: 0001-0782. D0 1:10.1145/5689.315644.
http://doi.acm.org/10.1145/5689.315644.

Content Watch Holdings, Inc.: Protecting Your Family. accessed 7.1.2018. 2018. http
s://www.netnanny.com/products/netnanny/protecting-your-famil
y.

Dijkstra, Edsger W.: A Case against the GOTO Statement. accessed 9.2.2018. 1972. h
ttps://www.cs.utexas.edu/users/EWD/transcriptions/EWDO2xx/EW
D215.html.

Dijkstra, Edsger W.: Programming: From craft to scientific discipline. accessed 9.2.2018.
1977. https://www.cs.utexas.edu/users/EWD/transcriptions/EWD0O5
xx/EWD566 . html.

Ekbia, Hamid and Bonnie Nardi: Heteromation and its (dis)contents: The invisible di-
vision of labor between humans and machines. en. In: First Monday 19.6 (May 2014).
1SSN: 13960466. http://firstmonday.org/ojs/index.php/Efm/article/v
iew/5331 visited on Jan. 31, 2018.

Flanagan, Mary and Helen Nissenbaum: Values at Play in Digital Games. 2014.

Fuller, Matthew: Behind the Blip: Essays on the Culture of Software. English. Brooklyn,
NY: Autonomedia, Mar. 2003. 1SBN: 978-1-57027-139-7.

Geertz, Clifford: Common Sense as a Cultural System. In: The Antioch Review 33.1
(1975), pp. 5-26. IsSN: 00035769.

Haigh, Thomas: Software in the 1960s as Concept, Service, and Product. In: IEEE
Annals of the History of Computing 24.1 (2002), pp. 5-13.

Haraway, Donna: Modest Witness: Feminist Diffractions in Science Studies. In: The
Disunity of Science: Boundaries, Contexts, and Power. Ed. by Peter Galison and David
J. Stump. 1996, pp. 428-442.

Harwood, John: The Interface: IBM and the Transformation of Corporate Design, 1945-1976.

English. 1 edition. Minneapolis, MN: Univ Of Minnesota Press, Nov. 2011. ISBN: 978-
0-8166-7039-0.

Hollerith, Herman: “Art of compiling statistics”. US395781 A. Cooperative Classification
GO6F7/42. Jan. 1889. http://www.google.com/patents/US395781 visited
on Jan. 31, 2018.

Horn, Jann et al.: Meltdown and Spectre Attack. accessed 9.2.2018. 2018. https://
meltdownattack.com.

Hu, Tung-Hui: A Prehistory of the Cloud. MIT Press, 2015.

Irani, Lilly: Hackathons and the Making of Entrepreneurial Citizenship. en. In: Science,
Technology, & Human Values 40.5 (Sept. 2015), pp. 799-824. 1SsN: 0162-2439, 1552-
8251. DO1: 10.1177/0162243915578486. http://journals.sagepub.com/d
01/10.1177/0162243915578486 visited on Jan. 31, 2018.

Kirschenbaum, Matthew: Extreme Inscription: Towards a Grammatology of the Hard
Drive. In: TEXT Technology 2 (2004). http://texttechnology.mcmaster.ca/
pdf/vol13_2_06.pdf visited on Jan. 31, 2018.

Kruchten, Philippe: Agile’s Teenage Crisis? accessed 7.1.2018. 2011. https://ww
w.infoq.com/articles/agile-teenage-crisis.

Kyong Chun, Wendy Hui: Programmability. In: Software Studies. Ed. by Matthew Fuller.
DOI: 10.7551/mitpress/9780262062749.003.0032. 2008, pp. 225-228. 1SBN: 978-0-
262-06274-9. http://mitpress.universitypressscholarship.com/view
/10.7551/mitpress/9780262062749.001.0001/upso-9780262062749-ch
apter-32 visited on Jan. 31, 2018.

Lammerant, Hans: How Humans and Machines negotiate the Experience of Time. 2017.
http://etherdump.constantvzw.org/p/observatory.guide.experienc
ingtime.diff.html.

Lau, Justin and Xing: Understanding Flowcharts. 2009. http://odec.ca/project
s/2009/xing9t2/hist.htm.

Liu, F. et al.: “Last-Level Cache Side-Channel Attacks are Practical”. In: 2015 IEEE
Symposium on Security and Privacy. May 2015, pp. 605-622. pol: 10.1109/SP.
2015.43.

Marx, Karl and Friedrich Engels: The communist manifesto. Penguin, 2002.

Neubert, Christoph: The Tail on the Hardware Dog. English. In: There is no Software,
there are just Services. Ed. by Irina Kaldrack and Martina Leeker. Lineburg, 2015,
pp. 21 —-37. 1SBN: 978-3-95796-055-9.

Nofre, David, Mark Priestley, and Gerard Alberts: When Technology Became Language:
The Origins of the Linguistic Conception of Computer Programming, 1950-1960. en.
In: Technology and Culture 55.1 (Mar. 2014), pp. 40-75. 1SsN: 1097-3729. po1: 10.
1353/tech.2014.0031. https://muse.jhu.edu/article/538908 visited on
Jan. 31, 2018.

Patterson, David A. and John L. Hennessy: Computer Organization and Design MIPS
Edition, Fifth Edition: The Hardware/Software Interface. English. 5 edition. Amsterdam
; Boston: Morgan Kaufmann, Oct. 2013. 1SBN: 978-0-12-407726-3.

Pernice, Kara: Talking with Users in a Usability Test. en. 2014. https://www.nngr
oup.com/articles/talking-to-users/ visited on Jan. 31, 2018.

Plant, Sadie: Zeroes and Ones: Digital Women and the New Technoculture. English.
1st edition. New York: Doubleday, Sept. 1997. 1SBN: 978-0-385-48260-8.

240

241

Stallman, Richard: What Does That Server Really Serve? en. June 2012. http://bos
tonreview.net/richard-stallman-free-software-DRM visited on Jan. 31,
2018.

TechMission UrbanMinistry.org: SafeFamilies.org | Accountability Software: Encyclope-
dia of Urban Ministry. accessed 7.1.2018. 2018. http://www.urbanministzry.
org/node/4902.

Techno-Galactic Software Observatory: Introduction to file therapy. 2017. http://ob
servatory.constantvzw.org/etherdump/clinic.file_therapy.md.di
ff.html.

Techno-Galactic Software Observatory: Notes from the Observatory on glossaries and
vocabularies. 2017. http://observatory.constantvzw.org/etherdump/vo
cabulary.md.diff.html.

Techno-Galactic Software Observatory: Notes from the Observatory on When and
Where is Software. 2017. http://observatory.constantvzw.org/etherdum
p/saturday.diff.html.

time was written by David MacKenzie. The man page was added by DirkEddelbuettel:
TIME(1) General Commands Manual. http://freeze.sh/man/time.

Ullman, Ellen: Close to the Machine: Technophilia and Its Discontents. English. Reprint
edition. New York: Picador, Feb. 2012. 1sBN: 978-1-250-00248-8.

websense.com: Explicit and transparent proxy deployments. accessed 7.1.2018 via
waybackmachine (18.4.2012). 2012. https://web.archive.org/web/2012041
8150020/http://www.websense.com/content/support/library/web/
v75/wcg_deploy/WCG_Deploy.1.3.aspx.

Wikipedia contributors: Agile software development — Wikipedia, The Free Encyclope-
dia. accessed 7.1.2018. 2018. https://en.wikipedia.org/w/index.php?ti
tle=Agile_software_development&oldid=818894701.

Wikipedia contributors: Content-control software — Wikipedia, The Free Encyclopedia.
accessed 7.1.2018. 2018. https://en.wikipedia.org/w/index.php?title
=Content-control_software&oldid=818780033.

Wikipedia contributors: Lernaean Hydra — Wikipedia, The Free Encyclopedia. ac-
cessed 7.2.2018. 2018. https://en.wikipedia.org/w/index.php?title=
Lernaean_Hydra&oldid=812030608.

Wikipedia contributors: Scrum (software development) — Wikipedia, The Free Ency-
clopedia. accessed 7.1.2018. 2018. https://en.wikipedia.org/w/index.ph
p?title=Scrum_(software_development)&oldid=816207177.

Wikipedia contributors: The Manifesto for Agile Software Development. accessed 7.1.2018.
2018. https://en.wikipedia.org/w/index.php?title=Agile_software
_development&oldid=818894701#The_Agile_Manifesto.

workrave.org: Frequently Asked Questions. accessed 7.1.2018. 2018. http://www.
workrave.org/documentation/faq.

¥ sourcE:

The Techno-Galactic Guide to Software Observation
was compiled by Carlin Wing, Martino Morandi,
Peggy Pierrot, Anita Burato, Christoph Haag,
Michael Murtaugh, Femke Snelting, Seda Glrses
and includes contributions from Manetta Berends,
Zeljko Blace, Larisa Blazic, Freyja van den Boom,
Anna Carvalho, Loup Cellard, Joana Chicau,
Cristina Cochior, Pieter Heremans, Joak aka
Joseph Knierzinger, Jogi Hofmduller, Becky Kazansky,
Anne Laforet, Ricardo Lafuente, Michaela Lakova,
Hans Lammerant, Silvio Lorusso, Mia Melvaer,

An Mertens, Lidia Pereira, Donatella Portoghese,
Luis Rodil-Fernandez, Natacha Roussel,

Andrea di Serego Alighieri, Lonneke van der Velden,
Ruben van de Ven, Kym Ward,

Wendy Van Wynsberghe and Peter Westenberg.

Techno-Galactic Software Observation team,
WTC Brussels, June 2017 (= P.243)

Copy editing: Carlin Wing

Layout, document engineering

and bespoke finish: Christoph Haag

Photography: Michaela Lakova, Michael Murtaugh,
Peter Westenberg, Donatella Portoghese

Printing: Online-Druck.biz, Krumbach (Schwaben)
Published by: Constant, Association for Art and Media,
Brussels (2018) ISBN: 978-9-08114-596-1

License: Free Art License (= P.248)

http://observatory.constantvzw.org
http://gitlab.constantvzw.org/ch/observatory.guide

242

Notes on Layout:

Typesetting this guide is part of an ongoing exploration of doc-
ument engineering along with ideas of lightweight markup lan-
guages and infinite rubber lengths. While moving through inter-
faces of digital editing, transplanting paradigms, experiencing lim-
itations and possibilities, it seems not like an end is in sight. To
put it in the spirit of illiterate programming: When was the last time
you spent a pleasant evening in a comfortable chair, cuddling with
a multi-headed monster. 83

https://freeze.sh/_/2018/tgso

The fonts used in this guide were prepared to be integrated into
the Techno-Galactic LaTeX Toolchain and are available via the
fontain font collection.

https://fontain.org/arimo
https://fontain.oxrg/plexmono
https://fontain.org/iaduospace
https://fontain.org/pxpcgathin

Arimo is a sans serif typeface developed by Steve Matteson 84
and released under the Apache 2.0 License. Together with Tinos
(serif) and Cousine (monospace) it provides the Chrome OS core
fonts, a collection of fonts that are metrically compatible with
Monotype Corporation’s Arial, Times New Roman, and Courier
New.

83 Jon Bentley and Don Knuth: Programming Pearls: Literate Programming. In:
Commun. ACM 29.5 (May 1986), pp. 384—369. 1ssN: 0001-0782. pol:
10.1145/5689.315644

8 http://www.monotype.com/people/steve-matteson

244

Plex Mono is a monospaced typeface and part of the superfamily
IBM Plex 8%, which was developed to replace fifty years of Neue
Helvetica as IBM’s corporate typeface. It is released under the
SIL Open Font License.

IA Writer Duospace is an adaptation of Plex Mono, aim-
ing at better readability while keeping the look and feel 8 of a
monospaced typeface. It is released under the SIL Open Font
License.

CGA Thin is a 8x8 pixel font recreated in truetype format by
VileR. 87 It is based on text mode fonts shipped on the character
ROM of IBM’s first video solutions. As part of the The Ultimate
Oldschool PC Font Pack it is available according to Creative
Commons Attribution-ShareAlike 4.0 International License.

Support:

?(% Vlaanderen “’
(verbeelding werkt

brussel

85 https://github.com/IBM/plex
8 https://ia.net/topics/in-search-of-the-perfect-writing-font
87 http://int106h.org

Free Art License 1.3. (C) Copy-
left Attitude, 2007. You can make
reproductions and distribute this
license ve{_balim (without any

Clarke, Benjamin Jean, Griselda
Jung, Fanny Mourguet, Antoine
Pitrou. Thanks to framalang.org

PREAMBLE

The Free Art License grants the right to
freely copy, distribute, and transform cre-
ative works without infringing the author’s
rights.

The Free Art License recognizes and pro-
tects these rights. Their implementation
has been reformulated in order to allow ev-
eryone to use creations of the human mind
in a creative manner, regardless of their
types and ways of expression.

While the public’s access to creations of
the human mind usually is restricted by
the implementation of copyright law, it is
favoured by the Free Art License. This li-
cense intends to allow the use of a works
resources; to establish new conditions for
creating in order to increase creation oppor-
tunities. The Free Art License grants the
right to use a work, and acknowledges the
right holders and the users rights and re-
sponsibility.

“Copy” means any reproduction of an origi-
nal as defined by this license.

OBJECT

The aim of this license is to define the con-
ditions under which one can use this work
freely.

SCOPE

This work is subject to copyright law.
Through this license its author specifies the
extent to which you can copy, distribute, and
modify it.

FREEDOM TO COPY (OR TO MAKE REPRO-
DUCTIONS)

You have the right to copy this work for your-
self, your friends or any other person, what-
ever the technique used.

FREEDOM TO DISTRIBUTE, TO PERFORM
IN PUBLIC

You have the right to distribute copies of
this work; whether modified or not, what-
ever the medium and the place, with or
without any charge, provided that you: at-
tach this license without any modification to
the copies of this work or indicate precisely
where the license can be found, specify to
the recipient the names of the author(s) of
the originals, including yours if you have
modified the work, specify to the recipient
where to access the originals (either initial
or t). The authors of the origi-

The invention and of digi-
tal technologies, Internet and Free Soft-
ware have changed creation methods: cre-
ations of the human mind can obviously be
distributed, exchanged, and transformed.
They allow to produce common works to
which everyone can contribute to the ben-
efit of all.

The main rationale for this Free Art License
is to promote and protect these creations of
the human mind according to the principles
of copyleft: freedom to use, copy, distribute,
transform, and prohibition of exclusive ap-
propriation.

DEFINITIONS

“work” either means the initial work, the
subsequent works or the common work as
defined hereafter:

“common work” means a work composed
of the initial work and all subsequent contri-
butions to it (originals and copies). The ini-
tial author is the one who, by choosing this
license, defines the conditions under which
contributions are made.

“Initial work” means the work created by
the initiator of the common work (as defined
above), the copies of which can be modified
by whoever wants to

“Subsequent works” means the contribu-
tions made by authors who participate in
the evolution of the common work by ex-
ercising the rights to reproduce, distribute,
and modify that are granted by the license.
“Originals” (sources or resources of the
work) means all copies oi ellher the initial
work or any sub

nals may, if they wish to, give you the right
to distribute the originals under the same
conditions as the copies.

FREEDOM TO MODIFY

You have the right to modify copies of
the originals (whether initial or subsequent)
provided you comply with the following con-
ditions: all conditions in article 2.2 above, if
you distribute modified copies; indicate that
the work has been modified and, if it is pos-
sible, what kind of modifications have been
made; distribute the subsequent work un-
der the same license or any compatible li-
cense. The author(s) of the original work
may give you the right to modify it under the
same conditions as the copies.

RELATED RIGHTS

Activities giving rise to authors rights and
related rights shall not challenge the rights
granted by this license. For example, this
is the reason why performances must be
subject to the same license or a compati-
ble license. Similarly, integrating the work
in a database, a compilation or an anthol-
ogy shall not prevent anyone from using the
work under the same conditions as those
defined in this license.

INCORPORATION OF THE WORK

Incorporating this work into a larger work
that is not subject to the Free Art License
shall not challenge the rights granted by this
license. If the work can no longer be ac-
cessed apart from the larger work in which
it is then incorporation shall

a date and used by their aulhor(s) as ref-
erences for any subsequent updates, inter-
pretations, copies or reproductions.

only be allowed under the condition that the
larger work is subject either to the Free Art
License or a compatible license.

COMPATIBILITY

A license is compatible with the Free Art Li-
cense provided: it gives the right to copy,
distribute, and modify copies of the work in-
cluding for commercial purposes and with-
out any other restrictions than those re-
quired by the respect of the other compati-
bility criteria; it ensures proper attribution of
the work to its authors and access to pre-
vious versions of the work when possible;
it recognizes the Free Art License as com-
patible (reciprocity); it requires that changes
made to the work be subject to the same
license or to a license which also meets
these compatibility criteria.

'YOUR INTELLECTUAL RIGHTS

This license does not aim at denying your
author’s rights in your contribution or any
related right. By choosing to contribute to
the development of this common work, you
only agree to grant others the same rights
with regard to your contribution as those
you were granted by this license. Confer-
ring these rights does not mean you have
to give up your intellectual rights.

'YOUR RESPONSIBILITIES

The freedom to use the work as defined
by the Free Art License (right to copy, dis-
tribute, modify) implies that everyone is re-
sponsible for their own actions.

DURATION OF THE LICENSE

This license takes effect as of your accep-
tance of its terms. The act of copying, dis-
tributing, or modifying the work constitutes
a tacit agreement. This license will remain
in effect for as long as the copyright which is
attached to the work. If you do not respect
the terms of this license, you automatically
lose the rights that it confers. If the legal
status or legislation to which you are sub-
ject makes it impossible for you to respect
the terms of this license, you may not make
use of the rights which it confers.

VARIOUS VERSIONS OF THE LICENSE

This license may undergo periodic modifi-
cations to incorporate improvements by its
authors (instigators of the Copyleft Attitude
movement) by way of new, numbered ver-
sions. You will always have the choice of
accepting the terms contained in the ver-
sion under which the copy of the work was
distributed to you, or alternatively, to use
the provisions of one of the subsequent ver-
sions.

SUB-LICENSING

Sub-licenses are not authorized by this li-
cense. Any person wishing to make use
of the rights that it confers will be directly
bound to the authors of the common work.

LEGAL FRAMEWORK

This license is written with respect to
both French law and the Berne Conven-
tion for the Protection of Literary and Artistic
Works.

248

